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P-ADIC L-FUNCTIONS VIA MODULI OF ELLIPTIC CURVES
Nicholas M. Katz

The first half of the paper is quite elementary. We explain the relation
between p-adic congruences for zeta-values and p-adic measures, and then we
give an Eulerian construction of the p-adic measure required for zeta and
I-functions of . Unfortunately, such elementary constructions are unknown
for other number fields.

The second half is less elementary. We explain the basic facts about the
moduli of p-adic elliptic curves. We then show how to use the resulting
theory of "generalized modular functions" to construct p-adic measures and
explain how these measures lead to the p-adic interpolation of certain
"I _series with grossencharacter" of quadratic imaginary fields.

T would like to thank Neal Koblitz for preparing a preliminary version of

this paper based on my lecture at the conference.

I. p-adic congruences for zeta (Euler, Kummer, Kubota-Leopoldt)

The theory of p-adic zeta functions may be said to have begun when Euler
discovered that the Riemann zeta function (£(s) assumes rational values

(essentially Bernoulli numbers) at negative integers.

Some two centuries later, Kummer was led to look at Bernoulli numbers
when he discovered that the question of whether a given prime p was
"regular" depended upon the p-adic shape of certain Bernoulli numbers. He
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480 NICHOLAS M. KATZ

discovered the "Kummer congruences" between Bernoulli numbers, which we will

record here as congruences between ({-values.

Kummer Congruence If k > 1 1is an integer not divisible by p - 1, then

£(1-k) is p-integral, and the value of ({(1-k) mod p
depends only on the value of k mod p - 1. (If k is
divisible by p - 1, {(1-k) is not p-integral).

In the late 1950's, Kubota and Leopoldt, in trying to understand this, ?
discovered that much more was true. To state their results, it is convenient
to introduce the auxiliary functions

£'(s) = (@ - p)e(s)
and, for each integer a > 2 prime to p,

£9%(s) = (1 - &%) £7(s).

Kubota-Leopoldt congruences:

I. If k>1 is an integer, then Q*’a(l—k) is p-integral; and
thg'value of Q*’a(l-k) mod pn+l depends only on the value of
k mod (p-1)p .
II. If k >1 is an integér not divisible by p - 1, then C*(l-k)
is p-integral, and its value mod pn+l depends only on the value
of k mod (p-l)pn.
In fact, II may be directly deduced from I by choosing a to be a primitive
root mod p. Notice that we recover the Kummer congruences as the special
case n = o of II.
The viewpoint of Kubota-Leopoldt is this. For each integer b mod
p -1, let S(b) denote the set of strictly positive integers = b mod p - 1.
Then S(b) is dense in Zp. By congruence I, the Zp-valued function on
S(b) defined by k=~ C*’a(l-k) extends to a continous Zp-valued function on
all of Zp. Such functions on :Ep are called p-adic zeta and I functions.

In what follows, we will supress this point of view, and emphasize the actual
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congruences which underlie it.

IT. p-adic congruences from p-adic measures (Mazur)

Let us begin by récalling the notion of a p-adic measure. Let X be
a compact and totally disconnected space. In the applications, it will always
be either Z , ZX, a finite space, a galois group, or a finite product of

the preceding. Let R be any ring which is complete and separated in its

p-adic topology. For the time being, R will be Zp itself, but later R

will be very large.

‘Consider the ring Contin(X, Zp) of all continuous Zzp-valued functions

on the space X. A Zp-linear map (p_ﬁ necessarily a ring homomorphism)
[T C.ontin(X, zzp) - R

is called an R-valued p-adic measure on X. The identity antin(X,R) =

Contin (X, ZD) é R shows that we can also view y as an R-linear map

Contin(X,R) ®R. For f : X — Zp an element of Contin(X, Zp), we denote

its image p(f) € R symbolically.as

ffdp, 5 OF /‘f(x)du(x)

X X

Obvious lemma  Suppose that f,g : X — Z.p are continuous functions, and

that f(x) = g(x) mod p" for all x e X. Then

ff‘du E\/gdu, mod an
X X

proof We have f - g = pnh, with h € Contin(X, Zp). Thus

ffdu-fgdu=pnfhdu QED
X X X
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Let us specialize to the case X = zz’;, and the power functions xk A '
L ) f(x i "
congruer'lce =k mod (p - 1)p between exponents implies a congruence ( ) ZP dp(a)

k_ k n+l
X = X mod p for all x € Z; (since (Z/p

j(x)du(a) o) f the contin. fet. x =
0 if not

n+l
Z

z)* has order (p-1)p™). z5
p 1%

Then the obvious lemma gives
(It is a general phenomenon in interpolating L functions that the first step

Koo /—\ k' n+1
fx au =/ % dy mod p if k=k mod (p - 1)p" is to construct a measure on Zp whose "moments" give the entire L-function.
When the measure is restricted to Z};, the effect upon the moments is to re-

D
move the p-Euler factor of the corresponding L-value. )

Once we have constructed a measure

for any p-adic measure on 7.
D This brings us to another point.

These are exactly the congruenc i Yo
v ngruences that the function k¢ >%(-k) (a) on %, we can integrate any continuous function. Thus let X(x) Dbe a

satisfies. So it i ‘ :
it is natural to expect that we can explain the Kubota-Leopoldt Dirichlet character mod pn, which we view as a locally constant function on

congruences by constructing a %Z _~-valued (a) x
g o ed measure |4 on Z_, one for each Zg. Tt turns out (though it is by no means obvious), that

integer a > 2 prime to p, such that

[, (a) _ o* < (*) fX(x) - Ban(® = (1 - & IX(a)) L(-K,X)
a) _ a _ k+1 k .
Jx dpL =¢27%(-k) = (1-a )(1-p)t(-k) 3 k= 0,1,2,... -
z> . g
Py .
: where L(s,X) is the Dirichlet series
In fact, we will first construct a measure p,(a) on all of Z_ which ( 1
p . -
satisfies ‘_ L(s,X) = Z X(n) * n°
B : n>1

] ,f (1’1,5) =1
k_(a) k+1

fx au = (1-a )¢(-k) for k = 0,1,2,... [The value L(-k,X) lies in the field q(values of X). 1In order to view X

Zo as a continuous p-adic function on Z:, we must choose a pr:j.me ¥y of this

. field lying over p, and view X as having values in its Y-adic completion.

[Notice that we cannot expect the moments f xkdu, of a measure on Z to ’
P

Z

The integral then lies in this completion, and it is in that completion that

P LT
o the equality (*) holds.]

satisfy the same sharp congruences. The point is that if k and k' are :
' L .
congruent modulo (p - l)pn, then the functions xk and xk are congruent ' FT peedie pesmmen o R

1 i‘n(k,k')_]

P

To understand what a p-adic measure on Zp is, we must understand what

n+ b's
mod ©p on Zp, but on p Z’p they are only congruent modulo pm

(a)

Th x . the ring Contin( %_, Z_) looks like. TFor example, the binomial coefficient
€ measure | on %p is then obtained by restrict:.on: pp

functions
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R

n!
i=o0

assume Zp-values on Zp (by continuity : they take Z-values on 2% ).

Theorem (Ma.hler) Let R be p-adically complete and separated. Then any

f € Contin( Zp,R) can be uniquely written

E x
f£(x) = an(n) > & €R, & =o

n>o

The a, may be recovered as the higher differences of f :

n
e = (2%)(o) = Z (—1)n_i(ril)f(i).
) i=o '
Conversely, any series

)‘X
Z a s a €R a =o
nSo n(n) n > “n
converges to an element of Contin( Z ,R).
P

Corollary #n R-valued measure K on Zp is uniquely determined by the

b4
sequence bn(u) =f<n>du of elements of R, and any sequence b determines
n

Z
p

an R-valued measure p by the formula

ff(x)qu - Z ab = HZO bn(Anf)(o)

7 n>o
p

Corollary  Suppose that p is not a zero divisor in R. Then an R-valued

measure § on Zp is uniquely determined by the sequence m (p)e R of its
} n

moments

mn(u) =/xndp.
Z
P

A sequence m of elements of R arises as the moments of an R-valued
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measure K if and only if the quantities

n
afn Z o
b = L Ci,nmi , a priori in R[1l/p]

all lie in R, in which case we have

VN
J G = v
Z
D

IV. Elementary construction of the zeta measure u(a) (Euler, Leibniz)

k+l)c(—k).

We begin by recalling Euler's computation of (1-2

Euler writes

k
(1-25Dye(-x) = (1-2°) DD JC 2w
n>1 n>1 2
_an an—-Z(-l)n'nk
n>1 n>1 n>1
odd n even

and applies Abel summation to this last expression:

D T ey - | A TS

n>1 . n_>_l

If we make the substitution T —1/T in this last formula, we see that
x

£(-k) = o if k >2 1is even. If we make the substitution T = e then
a short calculation gives the usual expression in terms of Bernoulli numbers.
More generally, let a >2 be .\any integer. Then

(1 - ak+l)!;(-k) = Z - s Zl (am)k = Z f(n) - i
n >

n>1 n>1

where .
1 ifn#o mod a

f(n) =

l-a if n=o mod a

The important points are that f is periodic mod a, and z f(n) = 0.
n mod a
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Thus
k+1 d k
(- a7 (k) = (T47) Z £(n)7"
n>1 T =1
a
L 2 e
= (T—T) z=2
1 - q@ 7 =1
a
K 2 £@)(® - 1)
- ('I‘i n=
aT \ 1. Ta IT =1
a .
k 'Z £(n) (1+T+. . .47 1)
- d n=1
= (Tﬁ)
14T, . 4721 T =1

_ element of Z[T]
(a7s, . 47 TyT T =1

k+1

This last expression shows that a el

; (L - a"7)¢(-k) eZ, a fact equivalent
to the Lipschitz-Sylvester theorem on Bernoulli numbers (cf [15]).

We are now ready to prove

Theorem For each integer a > 2 prime to p, there exists a Z -valued
I p

(a)
nmeasure | whose moments are given by

/xkdu(a) =(1-a"Ne(x) , k= 0,1,...

Z
b

Proof Our Eulerian calculation showed that
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k
(1 - ak+l)C(-k) - (Td%? elt. of ZlTl

1+T+. . 4t T =1

What is important here is that the denominator is an integral polynomial which
assumes a p-adic unit value (namely a) at T = 1.

ILet us denote by A the subring of Qp(T) consisting of all ratios
P(T)/Q(T) with P,Q € %p[T], and Q(1) € zz,’;. Since this is an algebraic
geometry conference, let me point out that A is the local ring of ZP[T]

at the maximal ideal (p,T-1).

Theorem (bis) Given any element F(T) e A, there is a Zp-valued measure

Hp on Ep whose moments are given by the formula

k
k a
‘/wx dup = (Ta'.f) (F) |t =1
Z
p

Proof What must be shown is that

a.,i . _
Ci,n (TEITI") (F)|T _q lesin Zp for n = 0,1,...

nM::

i o

or equivalently that

a *

T e Z for n = 0,1,..
at [(F _ s1s
n )’T"l °

In fact, we have

aT

Lemma  The operators (’I‘—d— act stably on the ring A, i.e.,
n

d
T5 (F) e A

n

then we see that they act stably on Zp[T].

Proof If we notice that
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d \_ , n.a®
Tﬁ =T (d—T)
n n!

then we see that Leibniz's formula is satisfied.

If we notice that

4 a a'
TaT j(r-q) = Z T3t Yw) (%57 Jo)
n i .

i+j=n .
= dJ
Let Q ¢ Zp[T] have Q(1) e %g. Applying Leibniz's formula to the

product Q- % =1, we find inductively that Té% (i) € A. Applying the same
; Q

n
\\
formula to the product P-% then shows that A is stable by the Té% .
i n
QED

V. Examples of [, and relations to Iwasawa's approach

F=7" : ffdpF = £(n)
F=(r-1)" : h/‘fdpF = (A'f)(0)

This second example permits us to identify Zp-valued measures on Z
with the elements of Zp[[T-l]], the measure | corresponding to the series

b3 bn(T—l)n, where bn =~/q(§)du. The measures Up Wwe considered above

correspond exactly to the rational functions in Zp[[T—l]] (the "rationality

of the zeta function"!). fThe multiplication of power series corresponds to

convolution of measures on the additive group ZD:

ﬁ‘(x)d(u * V) ﬂﬂf(x + t)du(x)av(t).

This identification of measures is the link to Iwasawa's approach. Let

£, for s e Zp, denote the function fs(x) = (l+p)sx; then
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(&%) (0) = ((14p)° -1)",

'so that

ffS(X)du - ngo b, ((1+p)° -1)"

p n
when the measure p corresponds to the series X bn(T-l) s

VI. Relation to IL~functions

Let V¥ be a locally constant function on %p’ say constant on cosets

modulo p'. For F e A, we define the function V1(®) vy

Ve (m) &2 - L 2 NI
P b mod p Cpn =.l

Let us check that [V]F 1lies again in A. We have

T = ¥(n)"
and

n
[V](GF) = G- [¥](F) if G(T) = G(LT) for a1l £° = 1.

The first formula shows that [V] preserves %p[T]. If we notice that every
element of A may be written with a denominator which is invariant by

T = ¢T for Cpn = 1 (simply multiply numerator and denominator of

P(T)/Q(T) vy ]TQ(CT), the product extended to the non-trivial p 'th roots
of unity), then the second formula shows that [V] is stable on A.

This operation [V] gives A the structure of module ovef the ring of
locally constant functions on %p. On the other hand, the set of all
measures on Z%Z_  1s a module over the ring of all continuous functions, the
module structure defined by k/\g(x)d(fp)& / f(x)g(x)dp. These structures

are compatible, for we have the

Integration Formula V/\f(x)du[WJF =K/'W(x)f(x)-duF

n n .
Proof  Suppose first that F = T'. Then [¥](T7) = ¥(n)T", and both integrals
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are V(n)f(n). By linearity, the two integrals then coincide for all
Fe Zp[T].

Now consider the general case F ¢ A. Suppose that V¥ is constant on
cosets mod pn, By the already used trick of writing elements of A with de-
nominators which are polynomials in Tpn, we may suppose F 1is so written.
Separating the exponents occurring in its numerator into congruence classes
mod pn, we may suppose (by additivity in F) that F is of the form
TaG(Tpn), where G(T) € A.

Since the (p,T-1)-adic completion of A is ZZp[[T-l]], the subring
Z.p[T] is dense in A. Thus we may write G(T) = lim Gk(T), with G

k

n
Putting F, = T, (TP ), we obtain

k k

F

k € ZZp[T], F = lim F

[V1(r,) = ¥(a)F,
[V1(F) = ¥(a)F

Because %he (p,T-1)-adic topology on Zp[['l‘-l]] is the strong topology on

measures, we may compute

\/‘\If(x)f‘(x)duF = l:i_mf‘l!(x)f(x)dqu = limff(x)du[‘y]Fk

lim W(a)ff(x)duF
k

\l’(a)ff(x)duF

= ff(x)d“[W]F
QED

Corollary For any locally constant function V¥ on Zp’ we have

€ Zp[T].

T S e omerme s
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f W(x)xkdu(a) = L(-k, V - ak“l\va)
Z'P

where ‘Jfa is the function Wa(x) = V(ax).
In particular, if V¥ is a multiplicative function on Zp,

f v()au(®) 2 (1 - Fl(a)) 1(en, V).
Z .
1%

*
(Notice that for V = the characteristic function of Z.;, L(s,¥) is £ (s)).

Proof Recall that u(a‘) is of the form LLF for F € A the rational

function
a

Zf(n)t[‘n 1 n#omoda

p=2=1_ £(n) =
1 -7
) l-a n = o mod a
written here in "non-A" form.

Suppose that V¥ is constant on cosets modulo pM. Then we can rewrite F in

another "non-A" form,

'U:g,

a
z £(n) T
n=1
F = N i
1- 1%
pM
The denominator is now invariant under T —{¢T for ¢ =1, so we get a
"non-A" representation of [V]F:
aph
L2 V@) .
[VIF = - = D ¥(m)e(n)T

l_Ta,p n>1

]

Y ¥ - a Y V(an) "

n>1 n>1
M M
p p
Y Yo" Y ¥(an)r*®
n=1 n=171
= i - a



492 NICHOLAS M. KATZ

By the integration formula, we have

% k
[ v e =f¢f(x>xkduF =kad“[w1F = (v (VI9))g _ .

If we now substitute into this last formula the expression we found above for
the rational function [V]F, we obtain the desired value & 1la Ewler, namely

L(-k¥ - 2 ).

VII. The relation with modular forms (Siegel, Serre)

We will now begin an extremely indirect approach to the values of ¢ at
negative integers. We will first obtain these values as the constant terms of
the g-expansions of certain modular forms. We will then interpret these
modular forms as functions on a certain moduli problem for p-adic elliptic
curves. Finally, we will explain how geometric information about this moduli
problem gives information about zeta values, culminating in a new construction
of the measure u(a).

The poig.t of this method, as opposed to the elementary one, is that it
works equally well for studying the values at negative integers of the
Dedekind zeta function of any totally real number field (if the number field
K is not totally real, i‘Fs zeta function vanishes at all negative integers).
See Ribet's talk in this volume for more details. In fact, it is at preseﬁt
the only method known for general totally real fields (but ef [1] for an
explicit approach to real quadratic fields). As a bonus, it also gives in-
formation on the values of certain L-series with "grossencharacter of type

AO" attached to quadratic imaginary fields.

VIII. Modular forms and their gq-expansions

Over eny ring R, we have the notion of an elliptic curve E/R (an

abelian scheme of dimension one), together with the notion of a nowhere
1

E/R
alweys exists at least locally on R, and if w is one such, any other is of

vanishing invariant differential w e HO(E,SZ )- Given E/R, such an w
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the form Mo for some A € RY.

When R = I, such a pair (E,w) is equivalent to the giving of a lattice
LCT: to (E,w) we associate the lattice of all periods of w over the
elements of Hl(Ean, %), and to the lattice L CT we associate the complex
torus m/L with the invariant differential dz (z the parameter on T). This
pair (@/L, dz) is given algebraically by (y2 = hx3-g2?(-g3, dx/y), where x is
the Weierstrass &-function ba(z;L) assoclated to the lattice I,

1
y = 80 (z3;L), and the constants s and g3 are given by the formulas

8y = 60 Z 1/131F s gy = 1ko Z 1/26.
£ el L el
L#£o0 L# 0
Under this correspondence, the replacement of (E,w) by (E,Md) corresponds to
the replacement of L by AL.
An (unrestricted) modular form of weight k over § is classically de-
fined to be a holomorphic function of lattices F(L) satisfying
F6= K-kF(L). Since any lattice is multiple of one of the form Z + %t
with Im(T) > 0o, F is uniquely determined by the holomorphic function on the
vupper half-plane f(t) = F(Z + %Z7). The function f arises from an F of
weight k if and only if it satisfies the functional equation

ab

f(a'r ha b) = (eT + d)kf('r) V(cd

e+ a ) € sLp(2Z)

An example of such a modular form is

Ak(L) = z 1/2k for k > 3; it is zero

£ el
140 for k odd.
The g-expansion of a classical modular form is the possibly\ infinite-
tailed Laurent series expansion in g = ezm'T of the (periodic with period
one) function TP F(2miZ + 2mi Zt) = (21ri)-kf('r). For example, the

q-expansion of
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o = (D5(): , k>h
e - A -

is given by

Traaw) s 2t ) &1

for k >L even
n>1 d,n -

G (a) =
0 for k odd

This formula is the basis of the connection between modular forms and

{-values.
We may algebraically define an (unrestricted) modular form of weight k
over any ring R to be a rule which assigns to any pair (E,w) over any
L]
R-algebra R a value F(E,w) € R', in such a way that

F(E, W) = NSp(B,0) ¥ A e(r")¥

F  commutes with all extensions of scalars R' = R"

F(E,w) depends only on the R'-isomorphism class of (E,w)

The g-expansion of a modular form F over R is a finite-tailed
Laurent series F(q) e R((q)) obtained as follows. Over €, the lattice

2mi Z + 2miZT defines the elliptic curve with differential
(Tfemiz + omizr , dz)
which is isomorphic, by the exponental map z —t = exp(z), to

e 8

The Weierstrass equation defining this curve has coefficients in the ring
Z[1/6]1[[q]], and with a bit of rearranging can be turned into an equation
over Z[[q]] which defines an elliptic curve with differential over Z((q))

This curve we call the Tate-Jacobi curve Tate(q) with its canonical

sy
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differential w By extension of scalars, we obtain (Tate(q), wcan) over

can
R((q)). The gq-expansion of a modular forms over R is defined to be its

value on this curve:

£(a) L2 r(Tate (@), )

et us state without proof the GAGA-type relations between these different
concepts of modular forms (ef[4], [7]).

1. A classical modular form Fcﬂ over O of weight k comes from an
algebraic one F over [ of weight k if and only if Fcz has a
finite-tailed g-expansion. In this case F(g) = FCE(Q), and F is
uniquely determined. -

2. (q-expansion principle) If the g-expansion of a modular form F
over R of weight k has all of its coefficieﬁts in a subring
Ro C R, then there exists a unique modular form F0 of weight k
over Ro which gives rise to F by extension of scalars. In par-
ticular, a modular form of given weight k is uniquely determined

by its g-expansion.

The modular forms with holomorphic g-expansions are really rather down to
earth objects. TFor example, over a ring R in which both 2 and 3 are in-
vertible, the graded ring of all (holomorphic) modular forms is just

R[ggs g3], with g aF Nelghh fenr A g3 B welght six.

IX. Heuristic

As a corollary of the GAGA principle, the modular forms 2Gk are defined
over @, in fact over Z[£(1-k)]. By looking at their coefficients, we obtain
many mé;guxes on Zb, as follows. For n > 1, the coefficient of qn in
Gk’ k > 3, is given by

coef of ¢ “in 26, = j{ (d#-l - ('d)k—l)
d|n



i
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This suggests that we define a measure M, on Zp by the formula

f fa = D
%b dln

(£(a) - £(-d))

Thus we have

. k-1 _ n .,
X duh = coef. of q  in 2(}k

So we would like to "let n go to zero" and define a measure H, on Z -

such that

k-1 .
V/ X" “du = constant term in 26, = ((1-k).
Z

D ~

Of course this is not possible as stated, simply because £(1-k) need not be
(]
p-integral. We could at best hope to obtain u(a) as the "limit" in some

sense of the measures uéa) defined by

J

[rwa® = [0 - atex)a .
Z Z

p b9

Let us explain how to realize this hope, by studying a moduli problem on which

: 1
the series G, - §C(1'k) themselves have an intrinsic meaning.

X. Generalized p-adic modular functions and trivialized elliptic curves

Henceforth, p is a fixed prime number, and we consider only rings R
which are p-adically complete and separated. Rather than consider pairs
(E,w) over R, we will now consider "trivialized elliptic curves" (E,q)

over R:
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E an elliptic curve over R
~ "~
o : E _‘Gm an isomorphism between the formal

group of E and the formal multiplicative gréup.

Given an elliptic curve E/R, it cannot admit a trivialization ¢ wunless all
the fibres of E/E are ordinary elliptic curves. If the fibres are all
ordinary, then in order to construct a trivialization we will in general have
to extend scalars from R to a vast pro-ind-etale over-ring Rc0 (ises;

R, will be p-adically complete and separated, and for each n, Rm/anw will
be an increasing union of finite etale over-rings of R/an).

Once we have one trivialization ¢, then any other is of the form Q¢
for some Q ¢ Zg = Aut(&;), at least over a ring R such that Spec(R/pR) is
cénnected. .

Notice that a trivialized elliptic curve (E,@) over R gives rise to an
elliptic curve with differential (E, q)?%&)), simply by pulling back the stand-
ard invariant differential dt/t on am' Notice also that the Tate curve
Tate (q), considered over ég}(q)), the p-adic completion of Zp((q)), admits
a canonical trivialization Poan’ simply because Tate(q) was obtained as
the guotient of Gm by the discrete subgroup q_%. Under this trivialization,

*
we have cpcan(d'b/t) = W

We now define a generalized p-adic modular function over a p-adically
complete and separated R to be rule F which assigns to any trivialized
elliptic curve (E,¢) over any p-adically complete and separated R-algebra
R' a value F(E,0) € R' in such a way that

F commutes with extension of scalars R =R
of p-adically complete and separated R-algebras
F(E,m) depends only upon the R'-isomorphism class

of (E’CP)
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It is of the utmost importance that we do not require that F have a weight,

i.e., a transformation property under the action of %;, defined by
-1
[a]F(E,(P) = F(E,a CP)

The ring of all generalized p-adic modular functions defined over R,
noted VR’ is itself a p-adically complete and separated R-algebra. It rep-
resents the functor

Mtrlv(R') = isomorphism classes of trivialized

elliptic curves (E,p) over R'
on the category of p-adically complete and separated R-algebras.

; tri
Geometrically, the functor M ¥V is formed from the stack of trivialized

elliptic curves J%#rlv by passing to isomorphism classes. The stack uﬁrlv
sits over the stack Jqord of ordinary elliptic curves as an ind-etale cover-

ing, with structural group %§ (we need stacks because the functor MOrd

<

is not representable):
M triv

ind-etale with structural group Z;.

’/,4 ord

. s rd . . .
Indeed, if E — /Qo is the tautological "universal elliptic curve" over

ord triv
the stack M » then is obtained as the bundle of frames of the

locally free rank one % -etale sheaf Rlﬂ‘ Z_ on /{ord.
p *7p
This sheaf corresponds to a character X of the fundamental group of

ord . . X . -
M with values in Z_. The surjectivity of this character is equivalent

T s haelf irreducible).

. . triv
to the irreducibility of /[ (since
There are two proofs of this surjectivity. The first, due to Igusa, studies
what happens in the neighborhood of a "missing point", corresponding to a

supersingular elliptic curve. Igusa proves that even after restricting X

to the local monodromy group (inertia group) at such a point, X remains
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surjective. The second proof, found recently by Ribet, is arithmetic in nature,

based on the interpretation of the value of X on the Frobenius element at-

tached to a closed point of Jnord (i.e., to an ordinary elliptic curve over a

finite field) as the unit root of the zeta function of that elliptic curve.
Ribet's proof wofks also for Hilbert modular varieties, and is discussed, along
with its applications, in his article in these Proceedings.

Remark To avoid stacks, we could instead choose an integer N > 3 prime to

p and rigidify our moduli problems with level N structures. Then MO (w)
is itself representable, though no longer geometrically irreducible, and the
covering Mtriv(N) —'Mord(N) is irreducible over each irreducible component
Mtriv

ord
(

of M (N) has a canonical action of

N). The coordinate ring Y(N) of

GL(2, Z/NZ) on it, under which the subring of invariants is V.

tri
XI. Consequences of the irreducibility of M T

Evaluation at (Tate(q), wcan) defines the q-expansion homomorphism
Vg —*ﬁ?}q)) for any R. Suppose first that R is a field k of character-
istic p. Then V, is the coordinate ring of Mtriwglﬁ, which is (essentiélly)
a smooth irreducible affine curve over k. Then (Tate(q), Qcan) defines a

k((q))-valued point of this curve which obviously does not lie over any closed

point, éo therefore must lie over the generic point. Thus we have proven

Temmsa When k is a field of characteristic p, the g-expansion homomorphism

Ve —k((q)) is injective.

As an immediate corollary, we get

Iemma ILet R Dbe a complete discrete valuation ring with uniformizing param-

eter m, and residue field k of characteristic p. Then the g-expansion

homomorphism

A
Vg = B((2))
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is injective, and its cokernel R((q))/ Vz is R-flat, i.e., has no p-torsion.

Proof  Since VR is flat over R (being formally ind-smooth over R), and
®k =y, (b STIV_ % 1), the injectivity of —./\))
\ =V, (because Mo =M » the injectivity of ¥, R((qa
follows from its injectivity modulo 1, and the fact that VR is p-adically
AN ’
separated. Given the injectivity of VR*R((q)), the flatness of its co-
kernel results from (and is equivalent to) its injectivity modulo .
QED
Technical as it looks, this last lemma is the key to everything, for it

allows us to construct a large number of elements of V (='VZ ):
D

1. Let £ be an (unrestricted) modular form of weight k, defined over Zp.

Then f may be viewed as an element of ¥, as being the rule
*
(E,p) = £(E,p (dt/t)).

The gq-expansion of f remains the same before and after we view f as
lying in V. Under the action of Z}; on Y{ defined by

[O]F (Eap) = F(E,Oflcp), f transforms by
[e]f = e

2. Let {fi} be a finite set of modular forms, fi of weight i, defined over

Z,, and suppose that zfi(q) e Zp[[Q]]’ say Zfi(q) = p™n(q).

Then there is a unique element h € §¥ whose g-expansion is h(q).

(For by hypothesis, the series h(g) is a pM-torsion element in

m))/ ¥V, hence itself is the q-expansion of a necessarily unique
element h e V).

For example, Gk - %Q(l-k) lies in {. Elements of this sorf are
called divided congruences, and form a subring of Y which can be
proven to be dense in all of ¥ (cf [8]).

3. Let h. Dbe a sequence of elements of § such that 1lim hi(q) exists in

i
Zp((q)). Then there is an element h e ¥ such that hw(Q) = lim hi(q).

(Because p- v=yn pn@)), the h® are a Cauchy sequence in V).
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Thus Y contains all "p-adic modular forms" in the sense of Serre

[17] and all divided congruences between them. In fact, Serre's "p-adic
modular forms of weight X" are exé,ctly the elements F ¢ V satisfying
[2]F = X(a)F for all a ¢ Z}; (ef [8]).

L. Let 6 denote the differential operator q-a%-. If heV, then 6h ¥
in the sense that 6(h(q)) is the g-expansion of an element of .
(Use the fact that 6 operates stably on Serre's p-adic modular forms,
stably on all divided congruences between them, and then invoke 3. above

together with the density of divided congruences in ).

(a)

XII. Construction of the V-valued measure {1 on %

14

The modular forms G, k > 3, have already been defined over Qp albeit

k

by a transcendental summation followed by an appeal to the g-expansion prin-

ciple. Serre [17]).has shown that the series

! n g
6,(a) = 3 £(-1) + nzZlq PLEEN R

is the g-expansion of a p-adic modular form of weight two over Qp We
define G, to be zero. We view all the G

1
V[—%]. The fundamental theorem is

K k=1,2,..., as elements of

b'd .
Theorem For a € Zp, there exists a §{-valued measure on %p whose moments

are given by

'k
/x le.(a) =2(1 - ak+l)Gk+l = 2Gk+l'-2[a]Gk+l for k = 0,1,2,..
Z

p

Proof Let us begin by noting that Gk+l - [a]G ‘does indeed lie in W:

k+1
< 1 ; 3
Certainly we have Gk+1 € \y[E], and Gk+1 has integral g-expansion except

possibly for its constant term. Thus we may apply the
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Key Lemma  Suppose h €V 1'-], and h has p-integral g-expansion except
oy TS P 14

possibly for its constant term. Then for any a € Z};, h - [a]h € V.

Proof of Key Lemma Let us write h(q) = A + £(q), with A € Qp and

f(q) € Rg(\(q)) Suppose that th € §. Then pMA € Zp, and
M M . M
'£(a) = (o) (a) + A, which shows that p £(q), and hence f(q) itself, is

the g-expansion of an element of V. Thus
3 1
h = A+ an elt. of Y in V[E]
Applying [a] yields
[alh = A + [a](an €lt. of §) = A + an elt. of Y.

Subtracting gives h - [a]h e Y. QED

Let us conclude the construction. We must show that <

m . )
C. fxld,u(a‘ eV¥Y for m = 0,1,...
E i,m

p

where the coefficients C:.L m °2re defined by
b

Thus we must show that

[a](2z Ci Gi+l)e V.
i 3

By the Key Iemma, it suffices to check that the element

B

1
2 =
Ci,m Gi+l €V [p]

o

[=N
(]
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has integral g-expansion except for its constant term. But we have

already computed the coefficient of qn in 2Gi +1° it was

[, s wmere [s@oa, c}':n (£(a) -£(-a)).

Z Z
P P
Thus
'm n X
2 Z ci’]m Gi+1(‘1) = constant + Z q f(m) d - QED
1=o0 n>1 Zp

XITI. Applications to quadratic imaginary fields: Hurwitz numbers

The t;:onstant term of the g-expansion of the V-valued measure p,(a) is

a Zp-valued measure on Zp’ which for a € Z, a > o, differs from the measure
we constructed by elementary means, only by a single point mass at the origin
(because the G,'s ignore the "accident” that ((o) = - % is # o, while Gy = o).

However, as we have a Y-valued measure, we may evaluate it at any
trivialized elliptic curve (E,q)) over any p-adically complete and separated
ring R, and obtain an R-valued measure on Zp.

To fix ideas, consider the gaussian curve y2 = hx3 - bUx, which has com-
plex multiplication by the gaussian integers; 1 acts as (x,y) = (-x,iy).
We view this curve as defined over Zp, but because we want it to be ordinary
mod p, we must suppose that p= 1 mod L.

What about a trivialization? None exists over Zp. If we extend scalars
to W, the Witt vectors of the algebraic closure of IFP, then there will be
trivializations. 1In fact, if ¢ is a trivialization, then cp*(dt/t) =
c-dx/y with c ¢ Vf{, and c¢ satisfies the equation

co-/c =u

where O is the Frobenius automorphism of W, and u € %; is the unit root
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of Frobenius. Conversely, if c € WX satisfies cU = uc, there exists a
unique trivialization ¢ with ¢*(dt/t) = cdx/y. In fact, the discovery
by Tate of the relationship between trivializations and unit roots of
Frobenius was the starting point of the application of p-adic analysis to any
sort of zeta function (ef [3], p. 257).

Let us fix a choice of c, and denote by Pe the corresponding trivial-
(a) at (y2 = hx3 - Lx, ¢c) we obtain:

(a)

ization. Then by evaluating

Theorem There exists a W-valued measure u on Zp whose moments are

given by

ka-ldu(a) = (1 - ak) Gk(y2 = hx3 - bx, cax/y) for k = 1,2...

Z
p

Let us make explicit the interpretation of these moments as values of

~

L-series with grossencharacter. For k > L, we can write

e (v = b3 - bx, ax/y)

( k( '
e -l) k'l)' c—k Ak(y2 = )-l-x3 - h—X, dX/.Y)-

2

Gk(y2'= hx3 - bx, cdx/y)

2
Over &, the lattice corresponding to (y = ltx3 - Lx, dx/y) is easily seen to

be QZ[i], where

1
fi = 2f & - 5.620057...
o 1-t

Thus we obtain an equality of complex numbers -

gk
a+bi

A (v° = b - bx, axfy) = A(R%Z[1]) = 975 (&[i])= 27F
1 \Y X, aX/y % = Ak * (a’.b) ;g (O,o)

which shows that the A are essentially the Hurwitz numbers [5].
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1

b')k converges absolutely for k > 3, but
(a,b) # (0,0) (a+bi

The series

sums to zero unless k = bg, in which case it is

4 E xEW) = 1(0,x™)

ideals?]

where XF is the grossencharacter of Z[i] defined by

xE@m) = 1/oF 15 Y= (@)

. =k
Thus we obtain the p-adic interpolation the function k — L(0,X ).

XIV. Manin's function of two variables

By quite different techniques, Manin and Vishik [12] have shown that

series of the form

(a-b1)" (0, XX ET)  ir Kk + 2r = o(k)
Z (a+b1)ET 0 if not
(a,b) # (0,0)

once their transcendental factors are removed, can be p-adically interpolated
to continuous p-adic functions of two variables (k,r), provided that

p=1 (L)
By using the techniques explained here, we are able to construct a

V~valued measure u(a) on zp pr whose moments
k-1 r a
ffx y du( )(x,y) eV
Z_ x'Z%
- P P
when evaluated on (y2 = hx3 —hx,q;c), give essentially these same L-values.

The proofs are long, and will appear elsewhere.
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TOPOLOGICAL USE OF POLAR CURVES

ﬁg Dﬁhq Tréng

In his lectures B. Teissier has mainly spoken about the use of
polar curves in the case of isolated singularities of complex hyper-
surfaces. Then in the case of complex. plane curves, M.Merle has shown
the relations between the topology of generic polar curves and that of
the related plane curve. In this lecture we shall deal with polar curves
in the case of hypersurfaces with not necessarily isolated singularities

and we shall give the different theorems one can prove involving polar

curves,

# l. DEFINITION

n+l

Let f: UCC —> @ be an analytic function defined on the open

neighbourhood U of O € ™. et g: U -——>¢2 be the mapping defined by
6(z) = (xo,f(z)), where x, is a linear form of ¢n+1. We call c(g) the
n+l

critical locus of . We may suppose X, is a coordinate of @ and that

are the others, then:

c(B): = [z € ufog/ax, = -+ = 3£/3x, = O}.

x LERIN

1’ n

(1.1) Notice that c(g) always contains the critical locus I(f)
of £, when U is sufficiently small:

£(£): = {2 € c(¢)|af/ax° = o}.

In [4] we have proved:
LEMMA (1.2) There is a Zariski open dense set Q of the projective

space of linear hyperplanes of cn+1‘passing through 0, such that for any

L € &4, say defined by some X, = 0, choosing U sufficiently small, one has
c(g) = Z(£) UT
where TI' is either void or a curve not contained in H: = {f = 0]}.

Moreover if I' 4 g, at any x € I' - {0} the ideal (Bf/Bxl,---,Bf/BxJ

defines a reduced curve.
iy ©.1975’ American Mathematical Society
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