\mathbb{C} -motivic		
kq-reso	lutions	

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

Complex Motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

December 31, 2019

$\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

1 Introduction

2 Preliminaries

3 The E_1 -term

4 Calculations

5 Motivic Telescope Conjectures

▲ロト ▲得ト ▲ヨト ▲ヨト ニヨー のくで

6 A motivic *J* spectrum?

	Table of Contents
C-motivic kq-resolutions Dominic	
Culver*, UIUC J.D. Quigley, Cornell University	2 Preliminaries
Introduction Preliminaries	3 The E_1 -term
The E ₁ -term Calculations	4 Calculations
Telescope Conjectures A motivic J	5 Motivic Telescope Conjectures
spectrum?	6 A motivic J spectrum?

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ◆□▶

$\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

*Everything in this talk is joint work with J.D. Quigley

Question

How can we compute the homotopy groups of the sphere spectrum S^0 ?

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

*Everything in this talk is joint work with J.D. Quigley

Question

How can we compute the homotopy groups of the sphere spectrum S^0 ?

Adams found a very powerful technique. Let E be a commutative ring spectrum. Then we have a cofiber sequence

$$\Sigma^{-1}\overline{E} \to S^0 \to E \to \overline{E}.$$

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope

Conjectures

A motivic *J* spectrum?

*Everything in this talk is joint work with J.D. Quigley

Question

How can we compute the homotopy groups of the sphere spectrum S^0 ?

Adams found a very powerful technique. Let E be a commutative ring spectrum. Then we have a cofiber sequence

$$\Sigma^{-1}\overline{E} \to S^0 \to E \to \overline{E}.$$

Adams' idea was to keep smashing this cofiber sequence with E. This yields a tower of cofibrations.

うつつ 川 スロットビット (四マート)

 $\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic

Telescope Conjectures

A motivic *J* spectrum?

This is what the tower looks like.

This gives rise to a spectral sequence, the E-based ASS, of the following form

$$E_1^{s,t} = \pi_t(\Sigma^{-s} E \wedge \overline{E}^{\wedge s}) \Longrightarrow \pi_{t-s}((S^0)_E^{\wedge}).$$

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope

A motivic *l*

spectrum?

This is what the tower looks like.

This gives rise to a spectral sequence, the E-based ASS, of the following form

$$E_1^{s,t} = \pi_t(\Sigma^{-s}E \wedge \overline{E}^{\wedge s}) \Longrightarrow \pi_{t-s}((S^0)_E^{\wedge}).$$

Under favorable circumstances, we even know the E_2 -term as

$$E_2^{s,t} = \operatorname{Ext}_{E_*E}^{s,t}(E_*, E_*).$$

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

Examples

- 1 When $E = H\mathbb{F}_p$ this recovers the classical Adams spectral sequence.
- 2 When E = MU or E = BP, then this the Adams-Novikov spectral sequence.

In both instances the E_2 -term is describable as an Ext group.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

Examples

- 1 When $E = H\mathbb{F}_p$ this recovers the classical Adams spectral sequence.
- 2 When E = MU or E = BP, then this the Adams-Novikov spectral sequence.

In both instances the E_2 -term is describable as an Ext group.

Mahowald intensively studied the case when E = ko, the connective cover of real *K*-theory *KO*. In this case there is no nice description of the E_2 -term.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

Examples

- 1 When $E = H\mathbb{F}_p$ this recovers the classical Adams spectral sequence.
- 2 When E = MU or E = BP, then this the Adams-Novikov spectral sequence.

In both instances the E_2 -term is describable as an Ext group.

Mahowald intensively studied the case when E = ko, the connective cover of real K-theory KO. In this case there is no nice description of the E_2 -term.

However, Mahowald was able to do a lot with the ko-based ASS.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures A motivic *I*

A motivic spectrum?

Examples

- 1 When $E = H\mathbb{F}_p$ this recovers the classical Adams spectral sequence.
- 2 When E = MU or E = BP, then this the Adams-Novikov spectral sequence.

In both instances the E_2 -term is describable as an Ext group.

Mahowald intensively studied the case when E = ko, the connective cover of real *K*-theory *KO*. In this case there is no nice description of the E_2 -term.

However, Mahowald was able to do a lot with the *ko*-based ASS. Most notably he used it to find the v_1 -periodic elements in π_*S^0 and prove the height 1 telescope conjecture.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic

Telescope Conjectures

A motivic *J* spectrum?

The construction of Adams spectral sequences is very general; it can be done in any tensor triangulated category \mathscr{C} . In particular when $\mathscr{C} = SH(S)$ is the stable motivic homotopy category over a base scheme S.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term Calculations Motivic Telescope Conjectures

A motivic J spectrum? The construction of Adams spectral sequences is very general; it can be done in any tensor triangulated category \mathscr{C} . In particular when $\mathscr{C} = SH(S)$ is the stable motivic homotopy category over a base scheme S.

In SH(S), there is an analogue of KO, referred to as Hermitian K-theory and denoted as KQ. There is also a "connective version" called kq.

Question

What does the kq-based Adams spectral sequence look like over a base field F? What does the v_1 -inverted version of this spectral sequence look like? What is this localized spectral sequence calculating?

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic J spectrum? The construction of Adams spectral sequences is very general; it can be done in any tensor triangulated category \mathscr{C} . In particular when $\mathscr{C} = SH(S)$ is the stable motivic homotopy category over a base scheme S.

In SH(S), there is an analogue of KO, referred to as Hermitian K-theory and denoted as KQ. There is also a "connective version" called kq.

Question

What does the kq-based Adams spectral sequence look like over a base field F? What does the v_1 -inverted version of this spectral sequence look like? What is this localized spectral sequence calculating?

In this talk I will discuss joint work with Quigley in the case $F = \mathbb{C}$.

Table of Contents

(ロ)、(型)、(E)、(E)、(E)、(O)への

Basics on KQ and kq

$\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction

Preliminaries

The E_1 -term

Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

Everything is 2-complete. We let H stand for mod 2 motivic cohomology and we let \mathbb{M}_2 denote the cohomology of a point. So

$$\mathbb{M}_2 = \mathbb{F}_2[\tau] \qquad |\tau| = (0, -1)$$

Basics on KQ and kq

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Preliminaries The *E*₁-term

Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

Everything is 2-complete. We let H stand for mod 2 motivic cohomology and we let \mathbb{M}_2 denote the cohomology of a point. So

$$\mathbb{M}_2 = \mathbb{F}_2[\tau] \qquad |\tau| = (0, -1)$$

In order to compute the kq-based ASS the first thing one needs to know is the co-operations algebra $\pi_{**}kq \wedge kq$. A natural choice for this is the motivic Adams spectral sequence

$$\operatorname{Ext}_{A_{**}}(\mathbb{M}_2, H_{**}kq \wedge kq) \Longrightarrow \pi_{**}kq \wedge kq$$

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

So what is $H_{**}(kq)$?

\mathbb{C} -motivic Steenrod algebra

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introductio

Preliminaries

The E_1 -terr

Calculations

Motivic Telescope Coniecture

A motivic *J* spectrum?

The $\mathbb{C}\text{-motivic}$ Steenrod algebra was computed by Voevodsky. It is given by

$$\mathscr{A}_{**}^{\mathbb{C}} \cong \mathbb{M}_2[\zeta_1, \zeta_2, \ldots; \overline{\tau}_0, \overline{\tau}_2, \ldots]/(\overline{\tau}_i^2 - \tau \zeta_{i+1}).$$

The bidegrees of the generators are given by

$$|\zeta_i| = (2^{i+1} - 2, 2^i - 1), \qquad |\overline{\tau}_i| = (2^{i+1} - 1, 2^i - 1).$$

\mathbb{C} -motivic Steenrod algebra

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term

Calculations

Motivic Telescope Conjecture

A motivic *J* spectrum?

The $\mathbb{C}\text{-motivic}$ Steenrod algebra was computed by Voevodsky. It is given by

$$\mathscr{A}_{**}^{\mathbb{C}} \cong \mathbb{M}_2[\zeta_1, \zeta_2, \ldots; \overline{\tau}_0, \overline{\tau}_2, \ldots]/(\overline{\tau}_i^2 - \tau \zeta_{i+1}).$$

The bidegrees of the generators are given by

$$|\zeta_i| = (2^{i+1} - 2, 2^i - 1), \qquad |\overline{\tau}_i| = (2^{i+1} - 1, 2^i - 1).$$

As in the classical case, this is a Hopf algebra. Its coproduct is given by the following

$$\psi(\zeta_k) = \sum_{i+j=k} \zeta_i \otimes \zeta_j^{2^i}, \quad \psi(\overline{\tau}_k) = \sum_{i+j=k} \overline{\tau}_i \otimes \zeta_j^{2^i} + 1 \otimes \overline{\tau}_k.$$

The homology of kq

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Preliminaries The E₁-term

Motivic Telescope Conjectures

A motivic *J* spectrum?

We define kq to be the very effective cover of KQ. This was originally constructed by Isaksen-Shkembi. The homology of kq is known to be given by the following

$$H_{**}kq \cong A/\!\!/A(1)_{**} \cong \mathbb{M}_2[\zeta_1^2, \zeta_2, \zeta_3, \dots; \overline{\tau}_2, \overline{\tau}_3, \dots]/(\overline{\tau}_i^2 - \tau\zeta_{i+1})$$

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

The homology is also a comodule over $A_{**}^{\mathbb{C}}$ via restricting the coaction.

The homology of kq

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

We define kq to be the very effective cover of KQ. This was originally constructed by Isaksen-Shkembi. The homology of kq is known to be given by the following

$$H_{**}kq \cong A/\!\!/A(1)_{**} \cong \mathbb{M}_2[\zeta_1^2, \zeta_2, \zeta_3, \dots; \overline{\tau}_2, \overline{\tau}_3, \dots]/(\overline{\tau}_i^2 - \tau\zeta_{i+1})$$

The homology is also a comodule over $A_{**}^{\mathbb{C}}$ via restricting the coaction.

Plugging this into the motivic Adams spectral sequence yields

$$\operatorname{Ext}_{A(1)_{**}}(\mathbb{M}_2,\mathbb{M}_2) \Longrightarrow \pi_{**}kq^{\wedge}_{(2,\eta)}.$$

 $\pi_{**}kq$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

16

Table of Contents

kq co-operations

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

To study the kq-based ASS it is paramount to have some understanding of $\pi_{**}(kq \wedge kq)$. A natural candidate for this is the motivic Adams spectral sequence:

$$\operatorname{Ext}_{A_{**}^{\mathbb{C}}}(\mathbb{M}_2,H_{**}(kq\wedge kq))\Longrightarrow \pi_{**}(kq\wedge kq).$$

By the change-of-rings isomorphism, the E_2 -term is expressible as

 $\operatorname{Ext}_{A(1)_{**}^{\mathbb{C}}}(\mathbb{M}_2, A/\!\!/A(1)_{**}).$

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

Mahowald's approach to $ko \wedge ko$

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term Calculations Motivic Telescope

A motivic *J* spectrum?

Mahowald was able to understand $ko \wedge ko$ up to certain torsion classes.

Theorem (Mahowald)

There is an equivalence of spectra

$$ko \wedge ko \simeq \bigvee_{i \ge 0} \Sigma^{4i} ko \wedge H\mathbb{Z}_i^{cl}$$

where $H\mathbb{Z}_{i}^{cl}$ is the i th integral Brown-Gitler spectrum. Moreover, there is an equivalence

$$ko \wedge H\mathbb{Z}_{i}^{cl} \simeq \begin{cases} ko^{\langle 2i-\alpha(i) \rangle} \vee HV_{i} & i \equiv 0 \mod 2\\ ks p^{\langle 2i-\alpha(i)-1 \rangle} \vee HV_{i} & i \equiv 1 \mod 2 \end{cases}$$

Mahowald's approach to $ko \wedge ko$

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic *J* spectrum?

Mahowald's approach is to first proceed at the level of homology: there is a homological shadow of the splitting.

Definition

Define the Mahowald weight on A_{\ast} by setting

$$\mathrm{wt}(\xi_i) = 2^{i-1}$$

and extending multiplicatively to monomials. We similarly define this on the subalgebras $A/\!\!/A(n)_{**}$.

Proposition

The Mahowald weight defines a filtration by comodules on A_* and the subalgebras $A/\!\!/A(n)_*.$

Mahowald's approach to $ko \wedge ko$ C-motivic kq-resolutions Dominic We can identify the homology of the $H\mathbb{Z}_{:}^{cl}$ inside $A/\!\!/A(1)_{*}$. Culver*. UIUC J.D. Quigley. Proposition Cornell University There are $A(1)_*$ -isomorphisms $H_{*}H\mathbb{Z}_{i}^{cl} \cong (A/\!\!/A(1)_{*})^{\mathrm{wt}=4i}$ The E_1 -term and there is an $A(1)_*$ -isomorphism $A/\!\!/A(1)_* \cong \bigoplus_{i>0} (A/\!\!/A(1)_*)^{\mathrm{wt}=4i} \bigoplus_{i>0} H_* H\mathbb{Z}_i^{cl}.$ A motivic l

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E₁-term Calculations Motivic Telescope Conjectures

A motivic J spectrum? Our idea was to mimic Mahowald's work on $ko \wedge ko$. The problem is that there is currently no construction of motivic analogues of Brown-Gitler spectra. Instead, we proceed algebraically.

Definition

Define the *Mahowald weight* on $A_{**}^{\mathbb{C}}$ by setting

$$\operatorname{wt}(\tau_i) = \operatorname{wt}(\zeta_i) = 2^i \qquad \operatorname{wt}(\tau) = 0$$

and extending multiplicatively to monomials. We similarly define this on the subalgebras $A/\!\!/A(n)_{**}$.

Proposition

The Mahowald weight defines a filtration by comodules on $A_{**}^{\mathbb{C}}$ and the subalgebras $A/\!\!/ A(n)_{**}^{\mathbb{C}}$.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

Definition

Let $M_1(k)$ denote the subcomodule of $A/\!\!/A(1)^{\mathbb{C}}_{**}$ spanned by monomials of weight exactly 4k.

Proposition (C.-Quigley)

There is a splitting in $A(1)_{**}^{\mathbb{C}}$ -comodules

$$A/\!\!/A(1)^{\mathbb{C}}_{**} \cong \bigoplus_{i \ge 0} M_1(k)$$

Remark

We speculate that there are motivic versions of the integral Brown-Gitler spectra $H\mathbb{Z}_{i}^{mot}$ and that there are isomorphisms

 $H_* \Sigma^{4i,2i} H \mathbb{Z}_i^{mot} \cong M_1(k).$

 $\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

(

Preliminaries The E_1 -term Calculations Motivic

Telescope Conjectures

A motivic *J* spectrum?

We have analogues of Mahowald's exact sequences

$$0 \to \Sigma^{4j,2j} H \underline{\mathbb{Z}}_j \to H \underline{\mathbb{Z}}_{2j} \to \underline{kq}_{j-1} \otimes (A(1)/\!/A(0))^{\vee} \to 0,$$

$$0 \to \Sigma^{4j,2j} H \underline{\mathbb{Z}}_j \otimes H \underline{\mathbb{Z}}_1 \to H \underline{\mathbb{Z}}_{2j+1} \to \underline{kq}_{j-1} \otimes (A(1)/\!\!/ A(0))^{\vee} \to 0.$$

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

This allows us to inductively compute $\operatorname{Ext}_{A(1)_{**}^{\mathbb{C}}}(H\underline{\mathbb{Z}}_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Table of Contents

4 Calculations

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

Recall that there is a (strict) symmetric monoidal functor, called *Betti Realization*

$$\mathsf{SH}(\mathbb{C}) \to \mathsf{Sp}; X \mapsto X(\mathbb{C}).$$

This map is quite nice on homotopy groups: it just sets τ to 1. That is,

$$\pi_{*,*}(X) \otimes_{\mathbb{Z}_2} \mathbb{Z}_2[\tau^{\pm 1}] \cong \pi_*(X(\mathbb{C})) \otimes_{\mathbb{Z}_2} \mathbb{Z}_2[\tau^{\pm 1}]$$

Moreover, we get a morphism of Adams spectral sequences,

$$E_r(X;kq) \rightarrow E_r(X(\mathbb{C}),ko)$$

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

This allows us to deduce many differentials.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Telescope Conjectures

A motivic J spectrum? Mahowald was able to prove the following.

Theorem (Mahowald)

In the ko-based ASS we have the following: **1** Suppose that $x \in E_1^{0,4k}$ with $n \ge 2$ is a cycle under d_1 . Suppose also that it is represented in $\pi_t(ko \wedge \overline{ko}^{\wedge n})$ by an element in $H\mathbb{F}_2$ -Adams filtration $f \ge 2$. Then x is a boundary under d_1 .

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

2 The d_1 -differentials $d_1 : E_1^{0,4k} \cong \mathbb{Z} \to \mathbb{Z} \cong E_1^{1,4k}$ is multiplication by $2^{\rho(k)}$ where $\rho(k) = v_2(8k)$

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term

Motivic Telescope Conjectures

A motivic , spectrum? We derive the $\mathbb{C}\text{-}\mathsf{motivic}$ analog of Mahowald's theorem via Betti Realization.

Theorem (C.-Quigley)

In the kq-based ASS we have the following:

- **1** Suppose that $x \in E_1^{n,t,u}$ is a τ -torsion free class with $n \ge 2$ and that x is a cycle under d_1 . Suppose also that it is represented in $\pi_{t,u}(kq \wedge \overline{kq}^{\wedge n})$ by an element of $H\mathbb{F}_2$ -Adams filtration $f \ge 2$. Then x is a d_1 -boundary.
- **2** Each τ -torsion class in $\pi_{**}(kq \wedge \overline{kq}^{\wedge n})$ is in the image of d_n , or is mapped essentially under d_n , or n = 0 or n = 1 and the homotopy can be identified with $\pi_{**}(H\mathbb{Z}_1 \wedge kq)$.

ヘロア 人間 ア ヘヨア ヘヨア

3

3 The d_1 -differentials $d_1: E_1^{0,4k,u} \cong \mathbb{Z} \to \mathbb{Z} \cong E_1^{1,4k,u}$ is multiplication by $2^{\rho(k)}$ where $\rho(k) = v_2(8k)$

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term

Motivic Telescope Conjectures

A motivic *J* spectrum?

- The \mathbb{C} -motivic differentials are lifted from the classical ko-based ASS. This relies on the following two facts.
 - Elements in the E_1 -page fall into two species: those which are τ -torsion free and those which are simple τ -torsion, i.e. x so that $\tau x = 0$.
 - 2 The classes which are simple *τ*-torsion are *η*-torsion free and are in fact *η*-multiples of *τ*-torsion free classes.

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

This allows us to derive everything from the classical situation.

 E_{∞} -page

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term

Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

We deduce from the differentials the following theorem.

Theorem (C.-Quigley)

1 The 0-line of the kq-resolution is given, as a $\mathbb{Z}_2[\tau, v_1^4]$ -module, by

$$E_{\infty}^{0,*,*} \cong \mathbb{Z}_{2}[\tau]\{1\} \oplus \\ \mathbb{M}_{2} \cdot \{v_{1}^{4k} \eta^{j} \mid k, j \ge 0\} / \mathbb{M}_{2}\{\tau v_{1}^{4k} \eta^{j} \mid j \ge 3\}.$$

2 The 1-line of the kq-resolution is given by

$$E_{\infty}^{1,*,*} \cong \bigoplus_{k \ge 0} \Sigma^{4k} \mathbb{Z}/2^{\rho(k)} [\tau] \oplus \mathbb{M}_2[h_1, v_1^4]/(h_1^3 \tau).$$

Inverting η

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E₁-term Calculations Motivic

Telescope Conjectures

A motivic J spectrum? Given an *E*-based ASS and an element of $a \in E_*$, one can consider the *a*-localized *E*-based ASS. Since localization is an exact functor, we still get a spectral sequence.

Question

What does the localized Adams spectral sequence converge to? If it converges at all.

Let's consider the case when E = kq and $a = \eta$. In this case, convergence is not guaranteed unless there is a horizontal vanishing line, which never happens for finite complexes. However, one can still obtain convergence with sufficient vanishing lines and bounds on torsion: It needs to be guaranteed that there cannot be an infinite family of hidden extensions relating *a*-torsion classes.

Inverting η

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term

Calculations

Motivic Telescope Conjectures

A motivic J spectrum?

It is an easy observation from the E_1 -page of the kq-based ASS that we have the following:

Proposition (C.-Quigley)

There is a vanishing line on the E_1 -page of the kq-based ASS for $S^{0,0}$ which is of slope 1/3 and through the origin. Put another way: We have $E_1^{s,t,*} = 0$ whenever t < 4s.

Proof.

First note that $\pi_{t,*}kq = 0$ if $t \leq 3$. Thus the smash powers $kq \wedge \overline{kq}^{\wedge s}$ are 4s - 1-connected. Alternatively, one can use the motivic ASS for $kq \wedge \overline{kq}^{\wedge s}$.

Inverting η

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The *E*₁-term

Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

This vanishing line is sufficient to infer that the η -inverted kq-ASS converges to $\eta^{-1}S$. From our calculation of the 0- and 1-lines we see that

$$\mathbb{F}_{2}[\eta^{\pm 1},\mu,\epsilon]/(\epsilon^{2}) \subseteq \pi_{**}\eta^{-1}S^{0,0}.$$

where $|\mu| = (9,5)$ and $|\epsilon| = (8,5)$. The class μ is detected by $v_1^4 \eta[0]$ on the 0-line and ϵ is detected by $2v_1^2 \eta[1]$ on the 1-line. Equality follows from the following:

Proposition (Bounded η -torsion)

If $x \in E_{\infty}^{n,*,*}(S^{0,0}, kq)$ is nonzero and $n \ge 2$, then $\eta^2 x = 0$.

This, along with the 1/3-vanishing lines shows that inverting η on E_∞ recovers $\eta^{-1}S^{\rm 0,0}.$

Inverting v_1

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term **Calculations** Motivic Telescope Conjectures

A motivic *J* spectrum?

We would like to perform a similar analysis to study v_1 -periodicity in the motivic sphere. This is analogous to Mahowald's program. We need the following.

Theorem (C.-Quigley)

We have a 1/5 vanishing line. More precisely, we have that $E_{\infty}^{n,t,u} = 0$ whenever 6n > t + 7.

The proof of this theorem is quite difficult, even classically. Our strategy is to mimic Mahowald's approach. We prove: (1) the spectrum $A_1 := S^{0,0}/(2, \eta, v_1)$ has kq-resolution having a 1/5-vanishing line, (2) from a v_1 -BSS we derive that $Y := S/(2, \eta)$ has a 1/5-vanishing line, (3) by carefully analysing the cofibrations defining Y and S/2 we derive that S/2 and S having 1/5 vanishing lines, resp.

	Inverting v_1
C-motivic kq-resolutions Dominic Culver*, UIUC J.D. Quigley, Cornell University	Combining the above we arrive at
Introduction	Theorem (CQuigley)
Preliminaries The E_1 -term Calculations	The only v_1 -periodic elements of $S^{0,0}$ are those v_1 -periodic elements in E_{∞}^0 and E_{∞}^1 .
Motivic Telescope Conjectures	
A motivic J spectrum?	
	◆□ > ◆香 > ◆き > ・ き - シへの

Table of Contents

Classical telescope conjecture

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

One formulation of the classical telescope conjecture is the following: Suppose that X is a finite p-local complex of type n. By nilpotence we now that X is a v_n -self map $f: \Sigma^d X \to X$. We have the telescope

$$f^{-1}X = \operatorname{colim}\left(X \to \Sigma^{-d}X \to \Sigma^{-2d}X \to \cdots\right)$$

It turns out that $f^{-1}X$ is K(n)-local, and so there is a map

$$f^{-1}X \to L_{K(n)}X.$$

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

Conjecture (telescopic formulation, Ravenel)

The above map is an equivalence.

Classical telescope conjecture

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic j spectrum? Another formulation is given by Miller: Let L_n^f denote the localization functor which arises from localizing with respect to finite complexes which are acyclic with respect to $K(\leq n) := K(0) \lor \cdots \lor K(n)$. Since finite $K(\leq n)$ -acyclics are also $K(\leq n)$ -acyclics, we get a natural morphism $L_n^f \to L_n$. The telescope conjecture is equivalent to

Conjecture (telescope conjecture, localization formulation)

The natural map $L_n^f \rightarrow L_n$ is an equivalence.

It has been shown that both L_n^f and L_n are smashing localizations, so this conjecture is also equivalent to the following.

Conjecture (telescope conjecture, smashing formulation)

The map $L_n^f S^0 \rightarrow L_n S^0$ is an equivalence.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

The chromatic picture motivically is far more complicated, even over \mathbb{C} . Recent work of Gheorghe and Krause has shown there are *exotic motivic Morava K-theories*. Gheorghe constructs $K(w_n)$ where

$$K(w_n)_{**} = \mathbb{F}_2[w_n^{\pm}] |w_n| = (2^{i+2} - 3, 2^{i+1} - 1).$$

Here, $w_0 = \eta$ and w_1 is a non-nilpotent element on $S^{0,0}/\eta$. Krause constructs even more exotic ones $K(\beta_{ij})$ for $i > j \ge 0$; he shows that $K(\beta_{n,0}) = K(w_{n-1})$. We have

$$K(\beta_{i,j})_{**} = \mathbb{F}_2[\alpha_{i,j}, \beta_{ij}^{\pm 1}]/(\alpha^2 = \beta).$$

where

$$|\beta_{ij}| = (2^{j+2}(2^i - 1), 2^{j+1}(2^i - 1)).$$

We set $K(\beta_{i,-1}) := K(i)$.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *]* spectrum?

We can order the
$$K(\beta_{ij})$$
 by slope

$$d_{ij} := \begin{cases} \frac{1}{2^{i+1}-2} & j = -1\\ \frac{\text{motivic weight of } \beta_{ij}}{\text{topological degree of } \beta_{ij}} = \frac{2^{j+1}(2^i-1)}{2^{j+2}(2^i-1)-2} & \text{else} \end{cases}$$

Definition

A finite cellular \mathbb{C} -motivic spectrum X is of type (m, n) if its homology $H_{**}X$ is τ -torsion free and if $K(\beta_{ij})_{**}X = 0$ for $i > j \ge -1$ with $d_{ij} > d_{mn}$.

Proposition (Krause)

If X is a finite motivic spectrum of type (m, n), then there is a non-nilpotent self $f : \Sigma^d X \to X$ of slope d_{mn} which induces an isomorphism in $K(\beta_{ij})$ -homology. Moreover, such maps are asymptotically the same.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic spectrum?

Following Miller's paper on finite localization we find

Proposition

If X is of type (m, n) with non-nilpotent (m, n)-self map $v: \Sigma^d X \to X$, then the map $X \to v^{-1}X$ is a finite $K(\beta_{mn})$ -localization.

This leads to the localization formulation of a motivic telescope conjecture. Let ${\cal L}_{mn}$ denote localization with respect to

$$K(\leq \beta_{mn}) = \bigvee_{d_{ij} > d_{mn}} K(\beta_{ij})$$

・ロト ・ 日 ・ ・ 日 ト ・ 日 ト ・ 日

Conjecture

The natural transformation $L_{mn}^{f} \rightarrow L_{mn}$ is an equivalence.

$\begin{array}{c} \mathbb{C}\text{-motivic} \\ kq\text{-resolutions} \end{array}$

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic J spectrum?

One can also consider the other formulations of the telescope conjecture in this setting. However, we do not know if they are equivalent. This would follow from the following.

Conjecture (Motivic smashing conjecture)

For each (m, n) the localization functor L_{mn} is smashing.

Finite localizations are always smashing, by a theorem of Miller. Our previous computations imply

Theorem (C.-Quigley)

There is an equivalence of motivic spectra $L_{10}^{f}S \simeq \eta^{-1}S$.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Preliminaries The E_1 -term

Calculations

Motivic Telescope Conjectures

A motivic *J* spectrum?

On the otherhand, inverting η in the kq-based ASS leads to the $\eta^{-1}kq$ -based ASS, which converges to $L_{\eta^{-1}kq}S$. Now $\eta^{-1}kq \simeq cKW$, connective Witt theory. Thus, our calculations show that the natural map

$$L^f_{10}S \to L_{cKW}S$$

is an equivalence. The $K(\leq\beta_{1,0})$ telescope conjecture would then follow from

Conjecture

There is an equality of Bousfield classes

$$\langle cKW \rangle = \langle K(0) \lor K(w_0) \rangle.$$

and the smashing conjecture.

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations

Motivic Telescope Conjectures

A motivic *j* spectrum? Our study of $v_1\text{-}\text{periodicity}$ similarly leads to some results about $v_1^{-1}S^{\text{0,0}}.$

$$v_1^{-1}S^{0,0} := \varprojlim_k v_1^{-1}S^{0,0}/(2^k)$$

Proposition

There are equivalences
$$L_{1,-1}^f S^{0,0} \simeq v_1^{-1} S^{0,0} \simeq L_{KQ} S^{0,0}$$
.

Note that $K(\leq \beta_{1,-1}) = K(0) \lor K(w_0) \lor K(1)$. On the other hand, we have that $\langle KQ \rangle = \langle KGL \lor KW \rangle$. So a (1,-1)-telescope conjecture would be true if the following were true.

Conjecture

We have the following equality of Bousfield classes $\langle KGL \rangle = \langle K(0) \lor K(1) \rangle$ and $\langle KW \rangle = \langle K(w_0) \lor K(1) \rangle$.

996

э

・ロト ・ 雪 ト ・ ヨ ト

Table of Contents

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

One of the original motivations for studying the ko-based ASS was to study v_1 -inverted homotopy. In particular, Mahowald used it to prove the telescope conjecture (at the prime 2): the natural map

$$v_1^{-1}S \to L_{K(1)}S$$

is an equivalence. That this is true followed from the fact that the ko-based ASS has a 1/5-vanishing line. Recall that in positive degrees, $L_{K(1)}S$ is the p-component of the

うして ふゆう ふほう ふほう ふしつ

image of J. In fact, $L_{K(1)}S$ is a "periodic image of J."

C-motivic ka-resolutions Dominic Culver*. UIUC At the moment there is no definition/construction of a motivic J.D. Quigley, *I*-homomorphism, though this is a matter of current study. Cornell University A motivic / spectrum?

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

At the moment there is no definition/construction of a motivic *J*-homomorphism, though this is a matter of current study. Nevertheless, Quigley and I conjecture the following:

Conjecture

The 0- and 1-line in the $v_1\text{-inverted}\ kq\text{-based}$ ASS computes the image of J in positive stems.

\mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E₁-term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

At the moment there is no definition/construction of a motivic J-homomorphism, though this is a matter of current study. Nevertheless, Quigley and I conjecture the following:

Conjecture

The 0- and 1-line in the v_1 -inverted kq-based ASS computes the image of J in positive stems.

What kind of person would I be if I didn't at least also propose a spectrum level definition of the image of J?

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E₁-term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

In classical homotopy theory, there is a fibre sequence

$$L_{K(1)}S \longrightarrow KO \xrightarrow{\psi^3-1} KO$$
 (6.2)

It is known that one can find a connective version of this resolution:

$$j \longrightarrow ko \xrightarrow{\psi^3 - 1} \Sigma^4 ksp$$
 (6.3)

うして ふゆう ふほう ふほう ふしつ

Note that $\beta^{-1}\Sigma^4 k s p = KO$. Here *j* denotes the connective image of *J* spectrum. Furthermore, upon inverting β in the *ko*-based ASS it becomes equivalent to (6.2).

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

Recently, Gheorghe-Isaksen-Krause-Ricka have constructed a functor

$$\Gamma_{\star}: \mathsf{Sp} \to \mathsf{SH}(\mathbb{C})$$

which is lax symmetric monoidal. It takes many classical connective ring spectra to their \mathbb{C} -motivic analogs. For example, we have

$$\Gamma_{\star}(ko) \simeq kq \qquad \qquad \Gamma_{\star}ksp \simeq ksp^{mot}$$

Here ksp^{mot} is the very effective cover of $\Sigma^{4,2}KQ.$ We also know that

$$\Gamma_{\star}(\Sigma^4 k s \, p) \simeq \Sigma^{4,2} k s \, p^{mot}.$$

 \mathbb{C} -motivic kq-resolutions

Dominic Culver*, UIUC J.D. Quigley, Cornell University

Introduction Preliminaries The E_1 -term Calculations Motivic Telescope Conjectures

A motivic J spectrum?

Thus, applying $\Gamma_{\!\star}$ we get a cofiber sequence

$$\Gamma_{\star}j \longrightarrow kq \xrightarrow{\Gamma_{\star}(\psi^3 - 1)} \Sigma^{4,2} ks p^{mot}.$$
(6.4)

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

Thus, we ask

Question

Does the kq-resolution contain a copy of (6.4)?

Furthermore, we conjecture

Conjecture

The $\mathbb C\text{-motivic}$ spectrum $\Gamma_{\!\star} j$ corresponds to a $\mathbb C\text{-motivic}$ connective image of J-spectrum

C-motivic	
kq-resolutions	
Dominic Culver*, UIUC J.D. Quigley, Cornell University	
Introduction	
Preliminaries	
The E_1 -term	
Calculations	
Motivic Telescope Conjectures	
A motivic J spectrum?	

Thank you! Any questions?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ