
MODULAR FORMS

D. CULVER

Contents

1. Modular forms over C 1
1.1. Eisenstein series 5
1.2. The algebra of modular forms 6
2. Modular forms over Z 6
References 12

1. Modular forms over C

This section is essentially lifted from [5]. Let us begin by recalling
that there is an action of the arithmetic group SL2(Z) on the upper
half plane

H := {z ∈ C | im z > 0}
given by Möbius transformations. Namely, if

g =

(
a b
c d

)
∈ SL2Z

and z ∈ H, then

gz :=
az + b
cz + d

.

Here is where this group action comes from: Let L denote the
set of lattices inside C, and let B denote the set of ordered pairs
(ω1, ω2) of elements in C∗ such that im(ω1/ω2) > 0. There is then
a surjective map

B → L; (ω1, ω2) 7→ Zω1 ⊕ Zω2.

So we regard B as the set of bases for lattices in L. Suppose that
two elements (ω1, ω2) and (ω′

1, ω′
2) of B gave the same lattice L ⊆ C.

Then we would be able to write

(1.1) ω′
1 = aω1 + bω2, ω′

2 = cω1 + dω2
1
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for some integers a, b, c, d ∈ Z. What this really describes is a linear
automorphism of L whose matrix with respect to the basis (ω1, ω2)
is

g :=
(

a b
c d

)
∈ SL2(Z).

Observe that the equations in (1.1) can be rewritten in terms of the
action of SL2Z on H:

g · ω1

ω2
=

ω′
1

ω′
2

.

This shows that the action of SL2Z on the upper half plane is only
meant to capture that two elements τ, τ′ ∈ H determine the same
lattice in C if and only if they are in the same SL2Z orbit. Note that
we have also clearly defined an action of SL2Z on B.

Proposition 1.2. The quotient B/SL2(Z) is isomorphic to L.

Now let C∗ act on L via homothety,

L 7→ λL,

and similarly C∗ acts on B by

λ · (ω1, ω2) := (λω1, λω2).

Observe the map
(ω1, ω2) 7→ ω1/ω2

defines a map to H, which produces a bijection

B/C∗ ∼= H,

passing to the quotient by the SL2(Z) actions gives a bijection

L/C∗ ∼= H/SL2(Z).

A modular function will be a function on the set of lattices L

satisfying a certain homogenity condition with respect to the action
by C∗. More specifically:

Definition 1.3. A modular function F of weight 2k is a complex-valued
function f : L → C satisfying the following conditions:

(1) (homogeneity) For each L ∈ L and λ ∈ C∗, F satisfies

F(λL) = λ−2kF(Λ);

(2) The function

f (τ) := F(Zτ ⊕ Z)

is a meromorphic function on H.
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Let’s translate this into a function on the upper half plane H. Let
F be a modular function of weight 2k, and let (ω1, ω2) ∈ B. Then
we can define a function f : H → C by

(1.4) F(ω1, ω2) = ω−2k
2 f (ω1/ω2).

Since F is SL2Z-invariant, this translates into the following func-
tional equation for f ,

(1.5) f (z) = (cz + d)−2k f (gz), for all g =

(
a b
c d

)
∈ SL2(Z)

Conversely, if we have a function f on the upper half plane satis-
fying (1.5), then we can define a function F on L satisfying homo-
geneity.

Remark 1.6. Note that in the definition of a modular function, we
could have defined modular functions of odd weight. However, all
such functions are zero as

F(−Λ) = F(Λ)

but homogeneity requires that

F(−Λ) = −F(Λ)

and hence F = 0.

We can now define modular forms.

Definition 1.7. Let k be an integer. We say a function f is weakly
modular of weight 2k if f is meromorphic on H and satisfies relation
(1.5).

This can be expressed using differential forms. First note that for
g ∈ SL2(Z)

d
dz

(gz) = (cz + d)−2

which can also be written as

d(gz) = (cz + d)−2dz.

We can consider the weight k differential dz⊗k, and we can rephrase
what it means for f (z) to be a weakly modular function (modular
form) by regarding f (z)dz⊗k as a SL2(Z)-invariant weight k mero-
morphic form.
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Fact 1. The arithmetic group SL2(Z) is generated by the following
elements

S :=
(

0 −1
1 0

)
and

T :=
(

1 1
0 1

)
.

The corresponding action on H is given by

Sz = −1/z

Tz = 1 + z.

A consequence of this fact is

Corollary 1.8. A meromorphic function f on H is weakly modular of
weight 2k if and only if

(1.9) f (1 + z) = f (z)

and

(1.10) f (−1/z) = z2k f (z).

Because of the relation (1.9), we can make the change coordinates
via q := e2πiz. This defines a holomorphic map

e2πiz : H → D \ {0}
where D denotes the open unit disc. As a function in q, f (q) is
meromorphic on D \ {0}. If f is meromorphic at 0, then we say
that f is meromorphic at infinity. In this case, f admits a Laurent
expansion near the origin

f (q) =
∞

∑
−∞

anqn

where the an are all zero for sufficiently small n. If f (q) is holomor-
phic at 0, then we say that f holomorphic at infinity, and in this case
the q-expansion is

∞

∑
n=0

anqn.

Definition 1.11. A weakly modular function f is modular if it is
meromorphic at infinity.

When f is holomorphic at infinity, we set f (∞) := f (0).
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Definition 1.12. A modular function f is a modular form if it is holo-
morphic at infinity. If f (∞) = 0, then we call f a cusp form.

1.1. Eisenstein series. Let L ⊆ C be a lattice. We define a lattice
function as follows

Gwk(L) := ∑
γ∈L\{0}

1
γ2k .

This clearly satisfies homogeneity can be shown to be meromorphic
on H. So this defines a weakly modular function. If ω1, ω2 is a basis
for L, then we can write

G2k(L) = ∑
m,n

1
(mω1 + nω2)2k

The associated weakly modular function on the upper half plane is

G2k(τ) = ∑
(m,n)∈Z×Z\{(0,0)}

1
(mτ + n)2k ,

and it turns out this is actually holomorphic everywhere, including
at ∞. So G2k is a modular form, and it is called the kth Eisenstein
series. One has that

lim
τ→i∞

G2k(z) = 2ζ(2k)

where ζ is the Riemann ζ-function. The q-expansions of the Eisen-
stein series is

G2k(z) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞

∑
n=1

σ2k−1(n)qn

where

σk(n) = ∑
d|n

dk.

We can divide G2k(z) by 2ζ(2k) to get the normalized Eisenstein series

E2k(z) = 1 + (−1)k 4k
B2k

∞

∑
n=1

σ2k−1(n)qn

where B2k denotes the kth Bernoulli number.



6 D. CULVER

1.2. The algebra of modular forms. Notice that the sum of two
modular forms of weight 2k is clearly another modular form of
weight 2k, and the product of a weight 2k and weight 2` modu-
lar form is of weight 2k + 2`. If we let M2k denote the space of
weight 2k modular forms, then

MF∗ =
⊕
k≥0

M2k

forms a graded algebra. Let M0
2k denote the space of weight 2k cusp

forms, i.e. those weight 2k modular forms f with f (∞) = 0. Note
the exact sequence

0 M0
2k M2k C 0

where the second map is evaluation at ∞. Since E2k(∞) 6= 0, this
map is indeed surjective. So we get a decomposition

M2k = M0
2k ⊕ C{E2k}.

It turns out that (cf. [5]) this graded algebra is a polynomial algebra
on E4 and E6.

Theorem 1.13.
MF∗ = C[E4, E6].

This fact has interesting consequences. In particular, each space
M2k is finite dimensional, This allows one to find interesting rela-
tions between modular forms, such as the Eisenstein series, and to
then deduce relations amongst the coefficients in their q-expansions.
This can yield interesting arithmetic information.

Example 1.14. The space M8 is one dimensional. This implies that
for some α ∈ C∗, E8 = αE2

4. As they are both 1 at ∞, α = 1.
Comparing the coefficients in the q-expansion yields the following
equality

σ7(n) = σ3(n) + 120
n−1

∑
m=1

σ3(m)σ3(n − m).

2. Modular forms over Z

I will now try to motivate the definition of modular forms over
more general rings, in particular over the integers Z. Fist, let’s start
by trying to think about what a complex modular form is.
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Recall that if Λ ⊆ C is a lattice, then the quotient C/Λ has the
structure of complex elliptic curve. This is obtained using the Weier-
strass ℘ function:

x(z) = ℘(z; Λ) :=
1
z2 + ∑

ω∈Λ\0

(
1

(z − ω)2 − 1
ω2

)
.

Let
y(z) := ℘′(z; Λ).

Let g4 = 60G4 and g6 = 140G6. It can be shown that ℘ satisfies the
differential equation

y2 = 4x3 − g2(Λ)x − g3(Λ),

which furnishes an embedding

ϕΛ : C/Λ → P2; z 7→ [x(z); y(z); 1].

Thus we have produced a map

(2.1) L → {elliptic curves overC}/ ∼=
This suggests that we might want to think of a modular form f (z)
as a function which gives a complex number f (E/C) for every el-
liptic curve over the complex numbers E/C, and we would like to
think that this number is an isomorphism invariant. But that is ac-
tually not correct because the embeddings of C/Λ depend on Λ,
but different choices of Λ may give isomorphic elliptic curves. In
other words, the map (2.1) is surjective but not injective1.

Observe that if λ ∈ C∗, and λΛ1 ⊆ Λ2, then scalar multiplication
by λ induces a holomorphic homomorphism

fλ : C/Λ1 → C/Λ2; z 7→ λz mod Λ2.

Every map of elliptic curves arise in this way.

Proposition 2.2. (cf. [6]) Let Λ1, Λ2 be lattices of C. Then the map

{λ ∈ C∗ : λΛ1 ⊆ Λ2} → { holomorphic homomorphisms C/Λ1 → C/Λ2}; λ 7→ fλ

is a bijection. Moreover, we can identify the target with the set of isogenies
of the elliptic curves determined by Λ1, Λ2. Consequently, the elliptic
curves C/Λ1 and C/Λ2 are isomorphic iff there is a scalar λ with λΛ1 =
Λ2.

1The fact that (2.1) is a non-trivial result going under the name of the Uni-
formization Theorem. For a proof, see [2].
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Since g2, g3 are modular forms, it follows that

g2(λΛ) = λ−4g2(Λ)

and
g3(λΛ) = λ−6g3(Λ)

which means that the embedding gives different Weierstrass expres-
sions for the same elliptic curve C/λΛ ∼= C/Λ. This suggests that
the lattice Λ is carrying some extra structure which we missed.

Observe that there is a translation invariant differential dz on C,
modding out by a lattice produces Λ produces an invariant dif-
ferential dz on C/Λ. The Weierstrass embedding (2.1) carries the
invariant differential dz to

ωΛ :=
dx
y

.

This differential pulls back to dz under the embedding ϕΛ since

ϕ∗
Λ(ω) =

d℘(z; Λ)

℘′(z; Λ)
= dz.

Proposition 2.3. [cf. [6]] There is a bijection

L → {(E, ω) | E is an elliptic curve over C, and ω is an invariant differential}

Proof Sketch. Let E be an elliptic curve with invariant differential
ω. Let γ1, γ2 ∈ H1(E, Z) denote the two generators of the first
homology of E. Then we can integrate these with respect ω. This
gives complex numbers

ωi :=
∫

γi

ω.

It turns out these are R-linearly independent, and so generate a
lattice Λ in C. It turns out that ϕΛ determines the isomorphism
between C/Λ and E, and carries dz to ω. �

This suggests that we can rephrase what it means to be a weight
k modular form.

Definition 2.4. (version 3) A modular form of weight 2k over C is
a function on pairs (E, ω) where E is an elliptic curve, and ω is an
invariant differential of E satisfying the following condition:

(1) (homogeneity) For all λ ∈ C∗, one has

f (E, λω) = λ−2k f (E, ω)
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(2) The function f (Z/(Zτ ⊕ Z), dz) is holomorphic in τ ∈ H
and bounded as τ → i∞.

Remark 2.5. We can translate between this definition of a modular
form and the one given earlier as a functin on lattices. In particular,
given a modular form in the sense of Definition 1.11, we define
a modular form in the sense of 2.4 by using the isomorphism of
Proposition 2.3, i.e. if (E, ω) ∼= (C/Λ, dz) then we set

f (E, ω) = f (C/Λ, dz) := f (Λ).

Since multiplication by λ induces a map of elliptic curves, carrying
the differential dz to λdz, it follows from 2.3 that

(C/Λ, dz) ↔ Λ

whereas
(C/Λ, λdz) ↔ λΛ.

Thus the homogeneity condition is the same in both definitions.

It is this definition that we will generalize to more algebraic set-
tings. Before proceeding with that, we will need some algebro-
geoemtric preliminaries. In particular we need to introduce what a
generalized elliptic curve is. For simplicity, we follow Rezk in [4]
and give a coordinate definition.

Definition 2.6. A generalized elliptic curve over a base scheme S is a
morphism of schemes p : E → S with a section e : S → E such that
there is a cover by opens Ui → S such that over each Ui, the scheme
E|Ui → Ui is isomorphic to a Weierstrass curve with basepoint e.
A morphism of generalized elliptic curve is a pullback diagram in
schemes

E′ E

S′ S

ϕ

p′ p

ϕ

which is locally a map of Weierstrass curves2.

Example 2.7. Consider the scheme over Spec(Z) given in affine co-
ordinates via the Weierstrass equation

C1 : y2 = x3 + 2x2 + 6

2There is a coordinate free definition of a generalized elliptic curve. See [1]
and [3].
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In this case the section e is picking out the point at infinity over each
point.

Remark 2.8. Let E be a Weierstrass curve over Spec(R), so in par-
ticular E → Spec(R) is a generalized elliptic curve. By Katharine’s
talk, we know that there is a line bundle on Spec(R) called the sheaf
of invariant differentials on E, denoted ωE. She wrote the invariant
differential

ω =
dx

2y + a1x + a3
,

this is a nowhere vanishing section of E, witnessing that ωE is a
trivial line bundle. Given a generalized elliptic curve E → S with
cover {Ui}, we have a sheaf of invariant differentials ωE|Ui

for each
Ui. From Katharine’s description of how the invariant differential
changes under change of coordinates allows us to glue these sheaves
together. This gives the sheaf of invariant differentials ωE/S for E. This
is a line bundle on S.

The sheaf of invariant differentials can also be defined as:

Definition 2.9. Let p : E → S be a generalized elliptic curve. Let
Ω1

E/S be the sheaf of relative differentials, which is a sheaf on E.
This is an invertible sheaf, and we define

ωE/S := e∗Ω1
E/S.

Observation 2.10. If ϕ : E′/S′ → E/S is a morphism of generalized
elliptic curves, then

ϕ∗ωE/S
∼= ωE′/S′

This suggests the following generalization of modular forms (cf.
[1]):

Definition 2.11. An integral modular form of weight k is a function
f which assigns to each elliptic curve E/S over a base scheme S
an element f (E/S) ∈ H0(S; ω⊗k) such that f is stable under base
change.

To be stable under base change means that if we have a pullback
diagram

E′ E

S′ S
ϕ
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where E/S is an elliptic curve over S, then

ϕ∗ f (E/S) = f (E′/S′) ∈ H0(S′, ω⊗k
E′/S′).

This looks slightly different then Definition 2.4. Let’s briefly relate
these two definitions. Suppose that we have an elliptic curve E →
Spec(R) which is given globally via a Weierstrass equation. Let

ω =
dx

2y + a1x + a3

be the invariant differential coming from the Weierstrass equation.
This is a nowhere vanishing section of the sheaf ωE. If f is a modu-
lar form of weight k, then we can write

f (E/R) = F(E/R, ω) · ω⊗k

where F(E/R, ω) ∈ R. The function F must satisfy:

(1) F(E/R, ω) depends only on the R-isomorphism class of the
pair;

(2) F satisfies the identity

F(E/R, λω) = λ−kF(E/R, ω)

for every λ ∈ R×.
(3) F is stable under pullback.

The condition (2) comes from the following: a modular form f re-
lies only on the R-isomorphism type of E/R. However, the differ-
ential ω is extra data. If we had chosen another nowhere vanishing
section ω′ of ωE, then the value F(E/R, ω′) will be different from
F(E/R, ω).

There a unit λ ∈ R× such that ω′ = λω. Thus we must have

λkF(E/R, λω)ω⊗k = F(E/R, λω) · (λω)⊗k = f (E/R) = F(E/R, ω) ·ω⊗k

and for these equalities to hold we must have that

F(E/R, λω) = λ−2kF(E/R, ω).

Examples 2.12. Let us quickly give some examples of modular forms
in this sense. Let E → Spec(R) be a Weierstrass curve. Recall that
Katharine defined some polynomials c4, c6, and ∆ from the coeffi-
cients of the Weierstrass equations. It turns out that c4ω⊗4, c6ω⊗6,
and ∆ω⊗12 are integral modular forms. To see why, note that under
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change of coordinates, there will be a unit u which alters c4, c6, ∆,
and the differential ω, as follows

c′4 = u4c4, c′6 = u6c6, ∆′ = u12∆, ω′ = u−1ω.

Thus the sections c4ω⊗4, c6ω⊗6, and ∆ω⊗12 are independent of the
Weierstrass coordinates for E. For example

c′4(ω
′)⊗4 = u4c4 · u−4ω⊗4 = c4ω⊗4.

This implies that we can define sections c4, c6 and ∆ for any gen-
eralized elliptic curve E → S, and these sections are clearly stable
under pullback. Thus they define integral modular forms of weight
4, 6, and 12 respectively.

The following theorem of Deligne tells us what the algebra of
integral modular forms is precisely.

Theorem 2.13 (Deligne). The ring of integral modular forms is generated
over Z by c4, c6 and ∆ and has exactly one relation

c3
4 − c2

6 = 1728∆.

That is, the ring of integral modular forms is the ring

Z[c4, c6, ∆]/(c3
4 − c2

6 − 1728∆).

So I’ve defined modular forms over Z to be a function which
assigns a section of ω⊗∗

E/S for each elliptic curve E/S. One can show
that the sheaves of invariant differentials ωE/S glue together to give
a sheaf ω on the moduli stack of elliptic curves Mell. Thus we also
have

Definition 2.14. The space of weight k integral modular forms is the
graded ring

H0(Mell; ω⊗k).

Corollary 2.15.

H0(Mell; ω∗) ∼= Z[c4, c6, ∆]/(c3
4 − c2

6 − 1728∆).
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