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1. INTRODUCTION

In recent work, [4], the author studied the cooperations algebra for the
second truncated Brown-Peterson spectrum at the prime 2. The purpose
of this paper is carry out the analogous analysis at odd primes. Many of
the proofs carry through in a similar way as in the p = 2 case, though there

This work was partially supported by NSF grant DMS-1547292.
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2 D. CULVER

are some differences that arise due to the difference in the structure of the
dual Steenrod algebra at odd primes.

The structure of this paper is similar to what is found in [4]. In section
2 we give an overview of the dual Steenrod algebra at odd primes. We also
discuss the homology of the truncated Brown-Peterson spectra BP 〈n〉 at
odd primes and show how to derive the their coaction over the quotient
E(τ0, . . .τn) of the dual Steenrod algebra.

In section 3, we prove the analogous splitting results of subalgebra A�
E(2)∗ as an E(τ0,τ1,τ2)-comodule. We also show that the E2-term of the
following Adams spectral sequence

ExtE(2)∗
(F2,A�E(2)∗) =⇒ π∗(BP 〈2〉 ∧BP 〈2〉)∧p

decomposes into two summands: one which is concentrated in Adams fil-
tration 0 and another which is v2-torsion free and concentrated in even
degrees. This results in the collapsing of the Adams spectral sequence for
BP 〈2〉 ∧BP 〈2〉, just as it does in the p = 2 case.

In section 4, we produce the analogues of weight and Brown-Gitler co-
modules to our odd primary case. We also derive analogues of the exact
sequences relating these Brown-Gitler comodules.

Finally, in section 5 we provide an inductive scheme for computing the
Ext groups of these Brown-Gitler comodules.

Conventions. Throughout this note, p will always denote an odd prime.
We will use H to denote the Eilenberg-MacLane spectrum HFp . We also
set q := 2(p − 1). Given a Hopf algebra B and a comodule M over B , we
will often abbreviate ExtB(F2, M ) to ExtB(M ). All spectra are implicitly
p-complete.

Also, we will use the notation E(n) to denote the subalgebra of A gener-
ated by the Milnor primitives Q0, . . . ,Qn. This is in conflict with the stan-
dard notation for the Johnson-Wilson theories, but as these never arise in
this paper, this will not present an issue.

Acknowledgements. This work grew out of the author’s previous work in
[4]. The author thanks again those individuals he thanked in that paper,
namely Prasit Bhattacharya, Mark Behrens, Doug Ravenel, Nicolas Ricka,
Stephan Stolz, Paul VanKoughnett, and Dylan Wilson.

2. ODD PRIMARY PREREQUISITES

The purpose of this section is to provide, for the readers’ convenience,
various facts about the odd primary dual Steenrod algebra. We also record
the mod p homology of the spectra BP 〈n〉 and their Margolis homology.



THE BP 〈2〉-COOPERATIONS ALGEBRA AT ODD PRIMES 3

2.1. Review of the dual Steenrod algebra. Let p denote an odd prime.
Then the dual p-primary Steenrod algebra is

A∗ = Fp[ξ1,ξ2,ξ3, . . .]⊗ E(τ0,τ1,τ2, . . .)

where
|ξn|= 2(pn − 1)

and
|τi |= 2 p i − 1.

We let P∗ denote the polynomial part and E∗ the exterior part. So A∗ ∼=
P∗⊗ E∗. The coproduct is given by the following formulas (cf. [7]):

(2.1) ψ(ξn) =
∑

i+ j=n

ξ p j

i ⊗ ξ j

and

(2.2) ψ(τn) = τn ⊗ 1+
∑

i+ j=n

ξ p j

i ⊗τ j .

Note that P∗ forms a sub Hopf algebra and that there is a short exact se-
quence

0→A∗ · P∗→A∗→ E∗→ 0

where P∗ denotes the augmentation ideal of P∗. This endows E∗ the struc-
ture of a primitively generated exterior Hopf algebra.

The dual Steenrod algebra also has a canonical anti-automorphism, the
conjugation map

χ : A∗→A∗.
In [7], it is shown that χ satisfies the following formula

(2.3)
∑

i+ j=n

ξ p i

j χξi = 0

and

(2.4) τn +
∑

i+ j=n

ξ p i

j χτi = 0

In the dual Steenrod algebra, we will let ζn := χξn and τn := χτn. The
coproducts on these elements are then given by

(2.5) ψ(ζn) =
∑

i+ j=n

ζ j ⊗ ζ
p j

i

and

(2.6) ψ(τn) = 1⊗τn +
∑

i+ j=n

τ j ⊗ ζ
p j

i .
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In [7], Milnor identified an important family of elements in the Steen-
rod algebra A which will play an important role in this work.

Definition 2.7. The Milnor primitives are defined inductively as elements
Qk ∈A by

Q0 :=β Qk+1 := [P pk
,Qk]

where β denotes the Bockstein element and

[a, b ] := ab − (−1)|a|·|b |ba.

Milnor showed that the Qk are dual to τk and that they generate a com-
mutative primitively generated exterior Hopf algebra E inside the Steen-
rod algebra. Because primitively generated exterior algebras are self dual,
the dual of E is also a primitively generated exterior Hopf algebra. In fact,
its dual is E∗.

Definition 2.8. For n ≥ 0, let E(n) denote the subalgebra of the Steenrod
algebra generated by the Milnor primitives Q0, . . .Qn,

E(n) := E(Q0, . . . ,Qn).

Then the dual of E(n) is the primitively generated exterior Hopf algebra

E(n)∗ = E(τ0, . . . ,τn).

Remark 2.9. Note that it follows from (2.4) that the elements τn and τn

are congruent modulo the ideal A∗ · P ∗. So

E(τ0, . . . ,τn) = E(τ0, . . . ,τn).

2.2. mod p homology of BP 〈n〉. In this subsection, we record the ho-
mology of the truncated Brown-Peterson spectra BP 〈n〉 and describe the
coaction on these comodules. The homology of the truncated Brown-
Peterson spectra was computed by Wilson in [9].

Theorem 2.10 (Wilson, [9]).

H∗BP 〈n〉=A�E(n)∗
Since the Milnor primitive Qk is dual to τk (cf. [7]), we have that

A�E(n)∗ = P∗⊗ E(τn+1,τn+2, . . .).

In order to proceed, we need to know A�E(n)∗ as a comodule over the
dual Steenrod algebra. As in [4], this is obtained as follows:

α : A�E(n)∗ A∗⊗A�E(n)∗ E(n)∗⊗A�E(n)∗
ψ π⊗1
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where the first map is the restriction of the coproduct to A�E(n)∗. That
it’s target is A∗⊗A�E(n)∗ follows from applying the coproduct formulas
to ζn and τk for k ≥ 3. The map π is the projection map fitting in the
following short exact sequence

0 A∗ ·A�E(n)∗ A∗ E(n)∗ 0.π

Since BP 〈n〉 is a commutative ring spectrum, its homology is a comod-
ule algebra. So the coaction map will be an algebra map, and so it is enough
to determine the coaction on the algebra generators. From [7], the Hopf
algebra E(n)∗ is the exterior algebra E(τ0, . . . ,τn)where the generators τk
are primitive. Thus we have the following,

Proposition 2.11. The E(n)∗-coaction on A�E(n)∗ is given on generators
by

α(ζk) = 1⊗ ζk(2.12)

α(τn+k) = 1⊗τn+k +
∑

0≤i≤n

τ i ⊗ ζ
p i

n+k−i(2.13)

for all k > 0.

This corresponds to a left E(n)-module structure on A�E(n)∗. Since we
will focus only on the case when n = 2, we will only write this part down
explicitly. The E(2)-action on A�E(2)∗ is given by

Qiζn = 0

for all i and n, and for all k ≥ 1,

Q0τ2+k = ζ2+k(2.14)

Q1τ2+k = ζ
p

1+k(2.15)

Q2τ2+k = ζ
p2

k(2.16)

These can be obtained from Proposition 17.10 of [8] as follows. Let X
be a spectrum. Then the mod p homology of X is given by

H∗(X ) :=π∗(H ∧X ).

This is naturally a left comodule over the dual Steenrod algebra. But it is
also a left A-module: Let a be an element of the mod p Steenrod algebra,
then the action of a on H∗X arises from

H ∧X H ∧X .
a∧1X

This left action of Aand the left comodule structure on H∗X are intricately
related.
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Proposition 2.17 (17.10, [8]). Let a ∈ A and u ∈ H∗X . Suppose that the
coaction on u is

α(u) =
∑

i

ηi ⊗ ui .

Then there is the identity

a · u =
∑

i

〈a,χηi〉ui .

2.3. Margolis homology. Now that we have calculated the (co)module
structure on A�E(2)∗, we can compute its Margolis homology. This fol-
lows as in [1]. We let M∗(BP 〈2〉;Qi ) denote the Margolis homology with
respect to Qi . Let Tn(x) denote the pnth truncated polynomial algebra
generated by x, i.e.

Tn(x) := Fp[x]/x pn
.

Theorem 2.18. The Margolis homology for BP 〈2〉 is given as
• M∗(BP 〈2〉;Q0)∼= Fp[ζ1,ζ2];
• M∗(BP 〈2〉;Q1)∼= Fp[ζ1]⊗T1(ζ2,ζ3, . . .); and
• M∗(BP 〈2〉;Q2)∼= T2(ζ1,ζ2, . . .).

Proof. This follows in the same fashion as [1, Lemma 16.9, pg 341] or [4,
Proposition 2.13] �

3. STRUCTURAL RESULTS

In [4], the author showed that there is a decomposition A�E(2)∗ as a
E(2)∗-comodule,

A�E(2)∗ ∼=E(2)∗
S ⊕Q

where S has trivial Margolis homology, and is hence free. The author then
argued that the Ext groups of Q are v2-torsion free by applying a Bockstein
spectral sequence. In this section, we will perform the same steps. The
purpose of this section is to carry out the corresponding arguments to the
case of an odd prime p. This requires an appropriate modification of the
the notion of length from [4]. Given this, most of the arguments carry
over in a straightforward fashion.

3.1. E(2)∗-comodule splitting. In [4], the concept of length was essential
to producing the E(2)∗-comodule splitting of H∗BP 〈2〉. We adapt these
methods to the odd primes.

Definition 3.1. We define the length of a monomial x, denoted as λ(x), by
setting

λ(ζn) = 0
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and setting
λ(τn) = 1

for all n, and extending λmultiplicatively. We define Fk(A�E(2)∗) to be the
subspace spanned by monomials of length ≤ k. We let A�E(2)(k)∗ denote
the subspace spanned by monomials of length k. If x ∈ A�E(2)(k)∗ , then
we say x has length k, and write λ(x) = k.

Remark 3.2. Suppose the monomial m is given as ζ i1
1 ζ

i2
2 ζ

i3
3 τ

ε3
3 ζ

i4
4 · · · . Then

the length is given by

λ(m) = #{n ≥ 3 | εn = 1}.

Remark 3.3. In [4], we defined the length of a monomial x to be the num-
ber of ζi ’s in x with an odd exponent. Our definition here may seem dif-
ferent at first. However, if one regards ζn as the even analogue of τn and
and ζ 2

n as the even analogue of ζn, then the definitions coincide.

Observation 3.4. The Fk(A�E(2)∗) gives a filtration of A�E(2)∗ by subco-
modules.

As in [4], the Leibniz formula for the action by Qi shows that

Proposition 3.5. For i = 0,1,2, if λ(x) = k > 0, then λ(Qi x) = k − 1.

From this lemma, this allows us to put an extra grading on the Margolis
homology of BP 〈2〉. More precisely, length can be regarded as a grading
on A�E(2)∗. In this grading, the action by Qi produces the following chain
complex

· · · A�E(2)(k+1)
∗ A�E(2)(k)∗ · · · A�E(2)(0)∗

Qi Qi

and the homology of this chain complex is M∗(A�E(2)∗;Qi ). This puts a
bigrading on the Margolis homology

M∗(BP 〈2〉;Qi ) =
⊕

k≥0

M∗,k(BP 〈2〉;Qi ).

Consequently, we have from 2.18 that

Corollary 3.6. If k > 0 then for i = 0,1,2, we have

M∗,k(BP 〈2〉;Qi ) = 0.

Following [4], §2.2, we define

S := E(2){x ∈A�E(2)∗ | λ(x)≥ 3}.
The same proof as in the prime 2 case gives
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Proposition 3.7. The Margolis homology groups of S are all trivial, conse-
quently S is a free E(2)-module.

Proof. The proof is mutatis mutandis the proof of Proposition 2.22 in [4].
�

This leads us to consider the following short exact sequence,

0→ S→A�E(2)∗→Q→ 0.

Since the Margolis homology of S is trivial, it follows that S is free. By
[6, ch. 15, Theorem 27], a module over a finite Hopf algebra over a field
k (such as E(2)) is free if and only if it is injective. Consequently, we get a
splitting of A�E(2)∗,

A�E(2)∗ ∼=E(2) S ⊕Q.

All that remains to show is that the Ext groups of Q are v2-torsion free.
We do so in the next subsection.

3.2. The v2-Bockstein spectral sequence. We proceed as in section 2 of
[4]. First, note that

E(2)�E(1)∗ ∼= E(τ2)
where, as an E(2)∗-comodule, the coaction on τ2 is

α(τ2) = τ2⊗ 1+ 1⊗τ2.

Note that we have a short exact sequence of E(2)∗-comodules

(3.8) 0→ Fp → E(2)�E(1)∗→Σ
2 p2−1Fp → 0.

Proposition 3.9. The connecting homomorphism for the short exact sequence
(3.8) induces multiplication by v2 on ExtE(2)∗

(up to a sign).

Remark 3.10. The only real difference in the proof below between the
one found in [4] is that we must keep track of signs.

Proof. The short exact sequence (3.8) gives a short exact sequence of cobar
complexes,

0→C •E(2)∗Fp →C •E(2)∗(E(2)�E(1)∗)→C •E(2)∗(Σ
2 p2−1Fp)→ 0

Let z be a cocycle in the cobar complex for Σ2 p2−1Fp . So

z =
∑

i

[a1,i | · · · | as ,i]

For z to be a cocycle, one must have

d z =
∑

i

s
∑

j=1

(−1) j [a1,i | . . . |ψ(a j ,i ) | . . . | as ,i] = 0
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A lift of z to the cobar complex for E(2)�E(1)∗ is the element

ez =
∑

i

[a1,i | . . . | as ,i]τ2.

The cobar differential on this lift is then

dez =
∑

i

 

s
∑

j=1

(−1) j [a1,i | · · · |ψ(a j ,i ) | · · · | as ,i]τ2+(−1)s+1[a1,i | · · · | as ,i | τ2]

!

= (−1)s+1
∑

i

[a1,i | · · · | as ,i | τ2]

The second equality follows from the fact that z is a cocycle. So the con-
necting homomorphism is the result of concatenations with τ2 in the co-
bar complex, which gives multiplication by v2 (at least up to sign). �

This allows us to draw the following conclusion.

Corollary 3.11. In the derived category of E(2)∗-comodules, there is a distin-
guished triangle

Σ2 p2−1Fp[−1] Fp E(2)� E(1)∗ Σ2 p2−1Fp
·v2

Tensoring with Q thus gives the following distinguished triangle

Σ2 p2−1Q[−1] Q Q ⊗ E(2)� E(1)∗ Σ2 p2−1Q
·v2

from which we can build the exact couple giving the v2-BSS:

E∗,∗,∗1 = Ext∗,∗E(1)(Q)⊗Fp[v2] =⇒ ExtE(2)∗
(Q).

with
E s ,t ,r

1 = Exts ,t
E(1)(Q)⊗Fp{v

r
2 }.

The group E s ,t ,r
∞ contributes to Exts+r,t+(2 p2−1)r

E(2)∗
(Q) and the differentials

are of the form
dk : E s ,t ,r

k → E s−k+1,t−(2 p2−1)k ,r+k
k ,

so that in Adams indexing, the differential looks like an Adams d1-differential.
As in [4] its enough to show that Exts ,t

E(1)(Q) is concentrated in even
(t − s)-degree. Note that there is a length filtration on Q induced from
the one on A�E(2)∗, and that all lengths are 0,1,2. Define S ′ to be the
E(1)-submodule of Q generated by elements of length 2, i.e.

S ′ := E(1){x ∈Q | λ(x) = 2}.
Since the Margolis homology of Q is isomorphic to the Margolis homol-

ogy of A�E(2)∗, Q’s Margolis homology it is concentrated in length 0 (and
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hence in even degree). We will argue the Q0 and Q1-Margolis homology
of S ′ is trivial.

Proposition 3.12. The Margolis homology groups M∗(S
′;Q0) and M∗(S

′;Q1)
are both trivial. Consequently, S ′ is a free E(1)-module.

Proof. The proof is analogous to the one for Proposition 2.15 in [4]. Sup-
pose that x ∈ S ′ is such that Q0x = 0, so x is a Q0-cycle. If λ(x) = 0, then
the only way for x ∈ S ′ is if there is a y ∈Q with λ(y) = 2 and Q0Q1y = x.
So x represents 0 in M∗(S

′;Q0) in this case.
Suppose then that λ(x) = 1. Since the Margolis homology of Q is con-

centrated in length 0, it follows that there is a y ∈Q with Q0y = x. Since
λ(x) = 1, it follows that λ(y) = 2, and so y ∈ S ′. Thus x represents the
zero class in M∗(S

′;Q0). Finally consider λ(x) = 2. It follows that x = 0 in
Q. So M∗(S

′;Q0) = 0. An analogous argument shows M∗(S
′;Q1) = 0. �

Corollary 3.13. Define Q by the short exact sequence of E(1)∗-comodules

0→ S ′→Q→Q→ 0.

Then, as S ′ is free, and hence injective, we have a splitting of E(1)∗-comodules,

Q 'E(1)∗
S ′⊕Q.

Proposition 3.14. The Ext-groups of S ′ are concentrated in even degree.

Proof. As S ′ is a free E(1)-module, its Ext groups are concentrated in Ext0,
so we just need to check that Ext0 is concentrated in even (t − s)-degree.
A set of generators of S ′ are the images of mτ iτ j with i 6= j where m is
a monomial of length 0. Since the degree of τn is 2 pn − 1, it follows that
mτ iτ j is in even degree. Since the action of the Qi changes degree by an
odd number, it follows that the bottom cells of the E(1)-module generated
by (the image) of mτ iτ j is in even degree. So Ext0

E(1)∗
(S ′) is concentrated

in even degree. �

We are left with showing that the Ext-groups for Q are concentrated in
even degree. In order to do this, it is necessary to use the Adams-Priddy
calculation of the Picard group of stable E(1)-modules ([2]). A review of
the necessary details can be found in section 2 of [4]. In particular, we will
show that Q splits as a direct sum of invertible E(1)-modules. First, let R
denote the subalgebra of A�E(2)∗ given by

R= P (ζ2,ζ3, . . .)⊗ E(τ3,τ4, . . .)⊆A�E(2)∗.

Note that the monomials of R are those whose weight1 is divisible by p2.
Moreover, R is an E(1)∗-subcomodule algebra of A�E(2)∗.

1The concept of weight is reviewed below.
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Lemma 3.15. As an E(1)∗-comodule algebra, A�E(2)∗ decomposes as

A�E(2)∗ ∼=E(1)∗
P (ζ1)⊗R.

This along with Theorem 2.18 allows us to compute the Margolis ho-
mology of R.

Lemma 3.16. The Q0- and Q1-Margolis homology of R is given by
(1) M∗(R;Q0)∼= P (ζ2),
(2) M∗(R;Q1)∼= T1(ζ2,ζ3, . . .).

Observe that the weight filtration on A�E(2)∗ yields a filtration on R.
In particular, we obtain a direct sum decomposition

R∼=E(1)∗

⊕

k

W2(k)

as an E(1)∗-comodule, where

W2(k) := Fp{m ∈ R |wt(m) = p2k}.

The Margolis homology of W2(k) is the weight p2k piece of the Margolis
homology of R.

Proposition 3.17. The Margolis homology groups M∗(W2(k);Qi ) for i =
0,1 are both one dimensional Fp -vector spaces. Thus, W2(k) is an invertible
E(1)∗-comodule.

Proof. As we have already mentioned, M∗(W2(k);Qi ) is the subspace of
M∗(R;Qi ) spanned by monomials of weight p2k. When i = 0, this implies
that

M∗(W2(k);Q0) = Fp{ζ
k

2 }.
Now fix k, and let its base p-expansion be

k = a0+ pa1+ p2a2+ · · · .
Then the monomial

m = ζ a0
2 ζ

a1
3 ζ

a2
4 · · ·

has weight p2k and is an element of M∗(W2(k);Q1). Suppose that x is a
monomial

x = ζ b2
2 ζ

b3
3 ζ

b4
4 · · ·

of weight p2k in M∗(R;Q1). Then b j < p for all j . Moreover, we have the
equality

k = b2+ p b3+ p2b4+ · · · .
The uniqueness of base p expansions implies that b j = a j−2 for all j ≥ 2.
This shows that

M∗(W2(k);Q1) = Fp{ζ
a0

2 ζ
a1

3 ζ
a2

4 · · · }.
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�

The decomposition of A�E(2)∗ gives a corresponding decomposition of
Q:

Q ∼= P (ζ1)⊗R∼= P (ζ1)⊗
�

⊕

k

W 2(k)
�

where R is the quotient of R by the E(1)-submodule generated by mono-
mials of length at least 2, and W 2(k) are the corresponding quotients of
W2(k). Note that the quotient map R→ R is an isomorphism on Margo-
lis homology. Thus, the Margolis homology groups of W 2(k) are both one
dimensional. So by [2, Lemma 3.5], these E(1)∗-comodules are invertible.
We are now in a position to conclude the following.

Proposition 3.18. The Ext-groups of Q are concentrated in even degree.

Proof. The proof of this statement is completely analogous to the p = 2
statement found in [4, Proposition 2.34]. �

The following theorem follows from Propositions 3.14 and 3.18.

Theorem 3.19. The v2-Bockstein spectral sequence for Q collapses at E2. Con-
sequently, the module ExtE(2)(Q) is v2-torsion free and concentrated in even
degree.

This gives the desired splitting on the E2-term of the ASS, and gives the
collapsing and topological splitting we had at the 2-primary case.

Corollary 3.20. The Adams spectral sequence E2-term for BP 〈2〉 ∧ BP 〈2〉
decomposes

ExtE(2)∗
(H∗BP 〈2〉)∼=ExtE(2)∗ (Fp )

ExtE(2)∗
(S)⊕ExtE(2)∗

(Q).

In particular, it decomposes into a summand which is concentrated in s = 0
and a summand which is v2-torsion free and concentrated in even degrees.

Since BP 〈2〉∧BP 〈2〉 is a module spectrum over BP 〈2〉, the differentials
in its ASS are linear over the ASS for BP 〈2〉. Hence we can conclude

Corollary 3.21. The ASS for BP 〈2〉 ∧BP 〈2〉 collapses at E2.

In [4, §2.6], the splitting of the Adams E2-term (and hence of the homo-
topy groups) was seen to have a topological origin. The same proof gives
an odd analogue.

Corollary 3.22. There is an equivalence of spectra

BP 〈2〉 ∧BP 〈2〉 'C ∨HV
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where HV is a generalized Eilenberg-MacLane spectrum with

π∗(HV )∼= ExtE(2)∗
(S)

and
π∗C ∼= ExtE(2)∗

(Q).

4. WEIGHT & BROWN-GITLER SUBCOMODULES

In [4], we defined a notion of weight for the comodules A�E(n)∗ and
we defined the i th Brown-Gitler subcomodule of A�E(n)∗ to be the sub-
space spanned by monomials of weight 2i . This was then used to pro-
duce exact sequences involving the Brown-Gitler subcomodules of A�E(2)∗
(cf. [4, Lemmas 3.15 and 3.17]). This was the entire basis of an inductive
method for explicitly determining the Ext groups in the Adams E2-term of
BP 〈2〉∧BP 〈2〉. The purpose of this section is to modify these methods to
the present situation. The reader who is familiar with [4] will notice that
several of the arguments are in fact simpler in the odd context.

4.1. Weight and Brown-Gitler subcomodules at odd primes. Central
to the computational methods of [4]was the concept of weight. We begin
with an odd prime analogue.

Definition 4.1. Let
wt(τk) := pk

and
wt(ζk) := pk

and extend multiplicatively,

wt(xy) =wt(x)+wt(y).

Remark 4.2. As with length, if one makes the usual translation between
the odd primary and mod 2 dual Steenrod algebra, this definition lines up
with the notion of weight we used in [4].

Definition 4.3. The jth Brown-Gitler comodule, denoted Ni ( j ), is the sub-
space of A�E(i)∗ spanned by monomials of weight less than or equal to
p j .

Remark 4.4. For consistency with the notation of Brown-Gitler spectra,
we will usually denote Ni ( j ) with BP 〈i〉

j
. In the particular case when

i = 1, then BP 〈1〉 is equivalent to the connective Adams summand `, so
we will write ` j for N1( j ).

From the coproduct formulas (2.5) and (2.6), we observe that BP 〈i〉
j

is

an A∗-subcomodule of A�E(i)∗.
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Definition 4.5. Let Mi ( j ) denote the subspace of A�E(i)∗ spanned by the
monomials of weight exactly p j .

In this section, we are most concerned with restricted coaction of A�
E(i)∗ to E(i)∗. Recall that the E(i)∗-coaction on A�E(i)∗ is the following
composite;

αE(i) : A�E(i)∗ A∗⊗A�E(i)∗ E(i)∗⊗A�E(i)∗
α π⊗1

We recorded the explicit formula for αE(i) in Proposition 2.11. This leads
us to

Proposition 4.6. Suppose that x ∈A�E(i)∗ is a monomial and that

αE(i)∗
(x) = 1⊗ x +

i
∑

j=1

τ j ⊗ x j

for x j ∈A�E(i)∗. Then wt(x j ) =wt(x).

Proof. Since A�E(i)∗ is a comodule algebra, its enough to do this in the
case that x = ζn or x = τn. These cases follow from Proposition 2.11. �

It follows from this proposition that Mi ( j ) is a subcomodule of A�E(i)∗.
Thus we have a direct sum decomposition

A�E(i)∗ ∼=E(i)∗

⊕

k≥0

Mi (k)

of E(i)∗-comodules.
When i ≥ 1, consider the algebra map defined by

ϕi : A�E(i)∗→A�E(i − 1)∗;
¨

ζk 7→ ζk−1 ∀k > 0
τ j 7→ τ j−1 ∀ j ≥ i + 1

.

As usual, one takes ζ0 = 1.

Proposition 4.7. The map ϕi is a map of ungraded E(i)∗-comodules.

Proof. As in the p = 2 case, observe that A�E(i)∗ is a E(i)∗-comodule
algebra generated by the elements {ζk | k ≥ 1} and {τn | n ≥ i + 1}. The
coproduct formulas (2.12) and (2.13) imply the proposition. Keep in mind
that we are regarding A�E(i − 1)∗ as an E(i)∗-comodule. �

Lemma 4.8. The map ϕi carries Mi ( j ) isomorphically onto Ni−1(b j/pc).

Proof. The proof is essentially the same as in the 2-primary case. Let x ∈
Mi ( j ) be a monomial, let’s say it is

x = ζ k1
1 ζ

k2
2 · · ·ζ

ki+1
i+1 τ

εi+1
i+1ζ

ki+2
i+2 τ

εi+2
i+2 · · ·
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Then
wt(x) =

∑

r≥1

kr p r +
∑

s≥i+1

εs p s

and
ϕi (x) = ζ

k2
1 · · ·ζ

ki+1
i τ

εi+1
i ζ

ki+2
i+1 · · · .

Thus
wt(ϕi (x)) =

∑

r≥1

kr+1 p r +
∑

s≥i

εs+1 p s .

In other words, we have

wt(ϕi (x)) =
p j − pk1

p
= j − k1.

Observe that wt(ϕi (x)) is divisible by p. This shows that ϕi maps the
subspace of Mi ( j ) spanned by monomials whose power of ζ1 is k1 isomor-
phically onto Mi−1(

j−k1
p ). Letting k1 vary (over integers k1 such that j −k1

is congruent to 0 mod p) shows that ϕi maps Mi ( j ) isomorphically onto
Ni−1 (b j/pc). �

Remark 4.9. The inverse of ϕi is given on monomials by

ϕ−1
i : ζ k1

1 ζ
k2

2 · · ·ζ
ki+1

i+1 τ
εi+1
i+1ζ

ki+2
i+2 τ

εi+2
i+2 · · · 7→ ζ a

1 ζ
k1

2 ζ
k2

3 · · ·ζ
ki+1

i+2 τ
εi+1
i+2ζ

ki+2
i+3 τ

εi+2
i+3 · · ·

where
a = j − p−1 wt(ζ k1

2 ζ
k2

3 · · ·ζ
ki+1

i+2 τ
εi+1
i+2ζ

ki+2
i+3 τ

εi+2
i+3 · · · )

Corollary 4.10. There is a graded isomorphism of E(i)∗-comodules

Mi ( j )∼=Σ
q j Ni−1(b j/pc)

Proposition 4.11. For 0≤ k < p, there is an isomorphism of graded E(i)∗-
comodules

Mi (p j )∼=Σqk Mi (p j + k)

induced by multiplication by ζ k
1 .

Proof. Same as for [4, Prop. 3.7]. �

Because of this last corollary, we will always make the identification

M2(p j )∼=Σq p j N1( j ).

Remark 4.12. Since there is a decomposition of E(2)∗-comodules, we have

A�E(2)∗ ∼=E(2)∗

∞
⊕

k=0

M2(k)∼=E(2)∗

∞
⊕

k=0

Σqk`bk/pc.
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4.2. Exact sequences. Recall that

E(2)�E(1)∗ ∼= E(τ2)

and consider the linear map

κ : A�E(1)∗→A�E(2)∗⊗ E(2)�E(1)∗
which is defined on the monomial basis by

ζ k1
1 ζ

k2
2 τ

ε2
2 ζ

k3
3 τ

ε3
3 ζ

k4
4 · · · 7→ ζ k1

1 ζ
k2

2 ζ
k3

3 τ
ε3
3 · · · ⊗τ

ε2
2

which takes the τ2 into E(2)�E(1)∗. We endow the right hand side with
the diagonal coaction. This is not a map of E(2)∗-comodules, as can be
seen in the following example,

Example 4.13. In A�E(1)∗, the coaction on τ2 is

α(τ2) = 1⊗τ2+τ0⊗ ζ2+τ1⊗ ζ
3

1 +τ2⊗ 1.

On the other hand, the coaction of τ2⊗ 1 in A�E(2)∗⊗ E(2)�E(1)∗ is

α(1⊗τ2) = τ2⊗ 1⊗ 1+ 1⊗ 1⊗τ2

However, the map κ is an isomorphism of Fp -vector spaces. Analo-
gously to the prime p = 2 case, we define the following filtration,

F j A�E(1)∗ := κ−1

 

⊕

k≥ j

M2(k)⊗ E(2)�E(1)∗

!

.

This is a decreasing filtration on A�E(1)∗ which induces a map on the
associated graded

E0κ : E0A�E(1)∗→A�E(2)∗⊗ E(2)�E(1)∗
as in [4].

Remark 4.14. Unlike in the p = 2 case, the map κ is actually a morphism
of Fp -algebras since τ2 is exterior in A�E(1)∗. So E0κ is also an isomor-
phism of algebras.

Note the following,

Observation 4.15. Let x be a monomial in A�E(1)∗. If x ∈ F j A�E(1)∗
then the weight of x is bounded below by p j . If the exponent of τ2 in x is 1,
then the weight is bounded below by p j + p2.

Observe that the coproduct formulas in Proposition 2.11 show that the
filtration F •A�E(1)∗ is a filtration by E(2)∗-comodules.
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Lemma 4.16. The filtration F •A�E(1)∗ is a multiplicative filtration, i.e.

F i A�E(1)∗ · F
j A�E(1)∗ ⊆ F i+ j A�E(1)∗.

Thus E0A�E(1)∗ is an E(2)∗-comodule algebra.

Proof. Let x ∈A�E(1)∗ be a monomial. Then x can be uniquely expressed
as mτε2 where m is a monomial in A�E(2)∗. Note that x ∈ F i A�E(1)∗ if
and only if wt(m) is at least pi . So let x ∈ F i A�E(1)∗ and x ′ ∈ F j A�E(1)∗
be monomials. Then

x x ′ = mm′τε+ε
′

2 .
Observe that the weight of mm′ is at least p(i + j ). So x x ′ ∈ F i+ j A�
E(1)∗. �

Proposition 4.17. The map E0κ is an isomorphism of E(2)∗-comodule alge-
bras.

Proof. We know that E0κ is a bijection and a map of algebras. So it suffices
to check that E0κ commutes with the coproduct on a generating set for
E0A�E(1)∗. One such generating set is

{ζ1,ζ2,τ2,ζ3,τ3, . . .}.
In E0A�E(1)∗, the coaction on all of these generators are the same as in
A�E(1)∗ except for τ2, which is a comodule primitive in E0A�E(1)∗. Since
1⊗τ2 is a comodule primitive in A�E(2)∗⊗E(τ2), the coaction commutes
with E0κ. �

Define quotients

R j A�E(1)∗ =A�E(1)∗/F j+1A�E(1)∗
Then there is a finite decreasing filtration on R j A�E(1)∗ which gives an
isomorphism

E0κ : E0R j A�E(1)∗→ BP 〈2〉
j
⊗ E(2)�E(1)∗.

Remark 4.18. Since there is a finite decreasing filtration on R j A�E(1)∗,
we obtain a strongly convergent spectral sequence

E2 = ExtE(2)∗
(E(2)�E(1)∗⊗BP 〈2〉

j
) =⇒ ExtE(2)∗

(R j A�E(1)∗).

Note that the spectral sequence is linear over Fp[v0, v1, v2] and observe
that the E2-term is ExtE(1)∗

(BP 〈2〉
j
). Since the E2-term is a direct sum of

v1-torsion in Ext0 and a v1-torsion free component concentrated in even
degrees, it follows that the spectral sequence collapses. Consequently, we
often regard R j A�E(1)∗ as BP 〈2〉

j
⊗ E(2)�E(1)∗.
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We now develop the analogs of the exact sequences found in [4].

Lemma 4.19. Let j ≥ 1 and let i ∈ {0,1, . . . , p − 1}. Then there is an exact
sequence of E(2)∗-comodules

0→Σq p j` j ⊗ `i → `p j+i → Rp j−1A�E(1)∗→
p−1
⊕

k=i+1

Σϕ( j ,k)` j−1→ 0.

where
ϕ( j , k) := q(p( j − 1)+ k)+ |τ2|

When i = p − 1, then we take the right-hand term to be 0, so that this exact
sequence is actually a short exact sequence.

Proof. Consider the following composite

ψ : `p j+i A�E(1)∗ Rp j−1A�E(1)∗

where the first is the inclusion map and the second is the projection. Ob-
serve that this is a map of E(2)∗-comodules. We can describe this map on
the associated graded. More explicitly, we have the diagram

`p j+i A�E(1)∗ Rp j−1A�E(1)∗

A�E(2)∗⊗ E(τ2) BP 〈2〉
p j−1
⊗ E(τ2)

κ κ

and the bottom composite is given on monomials by

mτε2 7→
¨

m⊗τε2 wt(m)≤ p2 j − p
0 otherwise

.

Let eψ denote the bottom composite. Since κ is an Fp -isomorphism, to de-

termine the kernel ofψ, it is enough to determine the kernel of eψ. Observe
that mτε2 is in the kernel if and only if

p2 j − p <wt(m)≤ p2 j + pi .

Note that, if ε = 1, then the weight of mτ2 is bounded below by p2 j +
p2− p, which is greater than p2+ pi . So mτ2 /∈ `p j+i , and so ε= 0. This
shows that

kerψ=
i
⊕

k=0

M2(p j + k).
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Applying Corollary 4.10 and Proposition 4.11 produces the following iso-
morphisms

kerψ=
i
⊕

k=0

M2(p j + k)

∼=
i
⊕

k=0

M2(p j ) · {ζ k
1 }

∼=
i
⊕

k=0

Σq p j` j · {ζ
k

1 }

∼=Σq p j` j ⊗ `i

as desired.
It remains to determine the cokernel of ψ. Note that when i = p − 1,

then the map eψ is surjective, and hence so isψ. So in this case the cokernel
is trivial and we get a short exact sequence.

So assume that i 6= p − 1. We will first identify cokerψ as an Fp -vector

space by determining coker eψ. Observe that the cokernel of eψ is given, as
an Fp -vector space, by

coker eψ=
p−i−1
⊕

k=1

M2(p( j − 1)+ i + k)⊗Fp{τ2}.

To see this, note that if ε = 0, then m ⊗ 1 is necessarily in the image of
eψ. Thus the cokernel will be spanned by elements of the form m⊗τ2 for
appropriate m in A�E(2)∗. The element m⊗ τ2 will not be in the image
of eψ if and only if mτ2 /∈ `p j+i . This is equivalent to the inequality

p2 j + pi <wt(mτ2) =wt(m)+ p2

Hence, m ⊗ τ2 is not in the image of eψ if and only if the weight of the
monomial m satisfies the following inequality:

p2 j − p2+ pi = p(p( j − 1)+ i)<wt(m)≤ p2 j − p.

The second inequality comes from the fact that m ∈ BP 〈2〉p j−1. This gives
the declared Fp -vector space.

We wish to show that there is an isomorphism of E(2)∗-comodules

cokerψ∼=E(2)∗

p−i−1
⊕

k=1

M2(p( j − 1)+ i + k)⊗Fp{τ2}
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To show this, consider an element of cokerψ which is represented by the
monomial mτ2 where m is a monomial in A�E(2)∗. Since A�E(1)∗ is a
comodule algebra, one has

α(mτ2) = α(m)(τ2⊗ 1+τ0⊗ ζ2+τ1⊗ ζ
p

1 + 1⊗τ2).

Let t ⊗ x denote a term occurring in α(m)2. Note that

wt(m) =wt(x)

and x ∈A�E(2)∗ since m ∈A�E(2)∗, and as

wt(m)≥ p2( j − 1)+ pi + p

it follows that m, x ∈ F p( j−1)+i+1A�E(1)∗. Observe that ζ2 and ζ p
1 are both

in F pA�E(1)∗. Thus xζ2 and xζ p
1 are in F p j+i+1A�E(1)∗. But as

Rp j−1A�E(1)∗ =A�E(1)∗/F p j A�E(1)∗,

it follows that these are 0 in Rp j−1A�E(1)∗, and so are zero in the cokernel.
So the terms τ0t ⊗ xζ2 and τ1t ⊗ xζ p

1 are zero in α(mτ2). Consider the
term τ2t ⊗ x. Note that

wt(m)≤ p2 j − p

and so m and x are in the image of ψ, and so are 0 in the cokernel. Com-
bining these observations shows that

α(mτ2) = α(m)(1⊗τ2)

establishing the desired comodule isomorphism. By another application
of Corollary 4.10, we obtain the desired exact sequence. �

Remark 4.20. We can explicitly describe the first map in the exact se-
quence above. From Remark 4.9, the first map

0→Σq p j` j ⊗ `i → `p j+i

is given by

ζ i1
1 ζ

i2
2 τ

ε2
2 ζ

i3
3 · · · ⊗ {ζ

k
1 | 0≤ k ≤ i} 7→ ζ a

1 ζ
i1

2 ζ
i2

3 τ
ε2
3 ζ

i3
4 · · · · {ζ

k
1 | 0≤ k ≤ i}

where
a = p j − p−1 wt(ζ i1

2 ζ
i2

3 τ
ε2
3 ζ

i3
4 · · · ).

Remark 4.21. Associated to these exact sequences are spectral sequences,
which will be analyzed in the next section to give an inductive procedure
for computing ExtE(2)∗

(` j ). Since we are actually interested in ExtE(2)(A�
E(2)∗), it follows from Remark 4.12 that we should compute ExtE(2)∗

(Σq p j` j ).
2the element x need not be a monomial
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Remark 4.22. The proof Lemma 4.19 can be adapted to the p = 2 case.
In particular, one can give a single argument to show the existence of the
exact sequences developed in [4].

5. CALCULATIONS AND APPLICATIONS

In this section, following, [4] and [3], we analyze the spectral sequences
induced by the exact sequences produced in the previous section. We will
apply this in particular to the prime p = 3 and compute ExtE(2)∗

(Σ12 j` j )
for small values of j . We continue to let q := 2(p − 1).

5.1. Inductive calculations. We will now develop an inductive technique
to calculate the v2-torsion free component of ExtE(2)∗

(` j ), based on the
exact sequences developed in the previous section. The content of this
section is adapted from [4]. Following [3], we regard the exact sequences
from Lemma 4.19 as giving spectral sequences converging to ExtE(2)∗

(`p j+i )
for i = 0, . . . , p − 1. Recall the following notation from [3].

Definition 5.1. We write
⊕

Mi[ki] =⇒ M

to denote the existence of a spectral sequence
⊕

Exts−ki ,t+ki
E(2)∗

(Mi ) =⇒ Exts ,t
E(2)∗
(M ),

and we abbreviate Mi[0] by Mi .

Thus, Lemma 4.19 shows that for each i ∈ {0, . . . , p−1}, there is a spec-
tral sequences of the form
(5.2)

�

Σq p j` j ⊗ `i

�

⊕Rp j−1⊕
� p−1
⊕

k=i+1

Σq(p( j−1)+k)+|τ2|` j−1[1]
�

=⇒ `p j+i ,

where we have written Rp j−1 as a shorthand for Rp j−1A�E(1)∗. Again, if
i = p − 1, then the term involving ` j−1[1] is actually 0.

In order to carry out this calculation, we need to be able to calculate
the Ext groups of R j A�E(1)∗. As mentioned in Remark 4.18, there is an
isomorphism

ExtE(2)∗
(E(2)�E(1)∗⊗BP 〈2〉

j
)∼= ExtE(1)∗

BP 〈2〉
j
.

So it is enough to compute ExtE(1)∗
(BP 〈2〉

j
). This is what we will do first.

This part is analogous to the corresponding calculation in [4].
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Lemma 5.3. For any j , there are isomorphisms

BP 〈2〉
j
∼=E(2)∗

⊕

0≤k≤ j

M2(k)∼=E(2)∗

⊕

0≤k≤ j

Σqk`bk/pc
∼=E(1)∗

j
⊕

k=0

bk/pc
⊕

m=0

Σ2k+2mHZbm/pc

Proof. The proof is the same as in [4, Lemma 3.22]. �

In order to utilize this decomposition as an E(1)∗-comodule, we need to
know ExtE(1)∗

(HZk) for each natural number k. Recall that for a comod-
ule M , Ext(M )〈n〉 denotes the nth Adams cover of Ext(M ), and αp(k) will
denote the sum of the digits in the p-adic expansion of k.

Lemma 5.4 ([5, Theorem 2 and Prop 3], [1, Prop 16.3]). Modulo torsion,
one has the isomorphism

ExtE(1)∗
(M1(k))/v0-tors∼= ExtE(1)∗

(Σ2(p−1)kFp)
D k−αp (k)

p−1

E

Consequently, from 4.10, there is an isomorphism

ExtE(1)∗
(HZk)/v0-tors∼= ExtE(1)∗

(Fp)
D k−αp (k)

p−1

E

.

From this lemma we have determined the E(1)-Ext groups of BP 〈2〉
p j−1

.

However, we also want to keep track of the names of the generators. This
follows from the following proposition. This will be done by determining
the v0-inverted Ext groups.

Proposition 5.5 ([3], [4]). We have the following isomorphism

v−1
0 ExtE(1)∗

(BP 〈2〉
j
)∼= Fp[v

±1
0 , v1]{ζ

i
1 ζ

k
2 | i + pk ≤ j }

Proof. The proof is an appropriate adaption of the proof of Proposition
3.26 of [4]. �

Remark 5.6. As in [4], the purpose of the preceding proposition is to
keep track of the generators in lowest degree of the Adams cover associ-
ated to the integral Brown-Gitler comodules HZk . Moreover, as in [4, Re-
mark 3.28], there is an algorithm to recover ExtE(1)∗

(HZk)/t o r s from
v−1

0 ExtE(1)∗
(HZk).

After inverting v0 in the spectral sequences (5.2), the E1-terms become
concentrated in even degree. Consequently, there are no differentials in
the v0-inverted spectral sequences. Similar arguments found in [4] show
the following.

Proposition 5.7. In the spectral sequences (5.2) the only nontrivial differ-
entials occur between v2-torsion classes. Consequently, when i = p − 1, the
spectral sequence collapses at E1.
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We now turn to giving a description of this spectral sequence. In par-
ticular, we will name generators after inverting v0. However, we want to
name the generators as classes in A�E(2)∗. For this reason, and because of
the isomorphisms

M2(k)∼=Σ
q j`bk/pc

we will begin to introduce suspensions.
Since the v0-inverted spectral sequences collapse immediately, we obtain

for i = 0, . . . , p − 1 summands

(5.8) v−1
0 ExtE(1)∗

(Σq(p2 j+pi)BP 〈2〉
p j−1
)⊆ v−1

0 ExtE(2)∗
(Σq(p2 j+pi)`p j+i ).

Our first task is to provide the names of these generators. Following [4,
§3.3], we use the following diagram

Σq(p2 j+pi)`p j+i Σq(p2 j+pi)Rp j−1A�E(1)∗

M2(p
2 j + pi)

∼= .

Given a monomial ζ i1
1 ζ

i2
2 ∈ v−1

0 ExtE(1)∗
(BP 〈2〉

p j−1
), we obtain from the

diagram,

ζ i1
1 ζ

i2
2 ζ i1

1 ζ
i2

2

ζ a
1 ζ

i1
2 ζ

i2
3

where
a := p2 j + pi − pi1− p2i2.

Thus we obtain

Lemma 5.9. Let i ∈ {0, . . . , p − 1}. The summands (5.8) are generated as
modules over Fp[v

±1
0 , v1] by the monomials

ζ a
1 ζ

i2
2 ζ

i3
3

where i2+ pi3 ≤ p j − 1 and a := p2 j + pi − pi2− p2i3.

We also have the following summands of the v−1
0 -Ext groups arising

from the inductive terms,

(5.10) v−1
0 ExtE(2)∗

(Σq((p2+p) j+pi)` j ⊗ `i )⊆ v−1
0 ExtE(2)∗

(Σq(p2 j+pi)`p j+i )
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for i ∈ {0, . . . , p − 1}. Our next goal is to name the generators of this
summand. This is determined by considering the complementary parts of
the exact sequences in 4.19. Specifically, consider the diagram

0 Σq((p2+p) j+i)` j ⊗ `i Σq(p2 j+pi)`p j+i

Σq(p2 j+pi)M2(p j )⊗ `i M2(p
2 j + pi)

∼=∼=

which on a monomial gives

ζ i2
1 ζ

i3
2 τ

ε3
2 ζ

i4
3 · · · ⊗ ζ

k
1 ζ a+k

1 ζ i2
2 ζ

i3
3 τ

ε3
3 · · ·

ζ i1
1 ζ

i2
2 ζ

i3
3 τ

ε3
3 ζ

i4
4 · · · ⊗ ζ

k
1 ζ b

1 ζ
a+k

2 ζ i2
3 τ

ε3
4 · · ·

where the integer a is as in Remark 4.20,

a := p j − p−1 wt(ζ i2
2 ζ

i3
3 τ

ε3
3 · · · ) = i1.

From Remark 4.9, the integer b is given by

b = p2 j + pi− p−1 wt(ζ a+i1
2 ζ i2

3 τ
ε3
4 · · · ) = p2 j + pi− (p2 j + pk) = p(i−k)

Observe that in the case when i = 0, then k = 0, and so b = 0.
Combining these observations shows that,

Proposition 5.11. Assume inductively that ExtE(2)∗
(Σq p j` j ) has generators

of the form {ζ i1
1 ζ

i2
2 ζ

i3
3 · · · }. Then for i = 0, the summand (5.10) has generators

of the form {ζ i1
2 ζ

i2
3 · · · } and for 0< i < p, the summand (5.10) has generators

of the form

{ζ i1
2 ζ

i2
3 · · · } · {ζ

pi
1 ,ζ p(i−1)

1 ζ2, . . . ,ζ
p

1 ζ
i−1

2 ,ζ i
2 }.

We would now like to determine some hidden v2-extensions in these
spectral sequences. Most of them will be given by the length spectral se-
quence, as developed in [4]. We review this now spectral sequence now.

There are other hidden v2-extensions that need to be resolved. More
specifically, the summands (5.8) are only modules over Fp[v

±
0 , v1] on the

E1-page. To resolve these hidden extensions, we will make use of the length
spectral sequence as developed in [4]. This is the spectral sequence which
results from the length filtration as defined in Definition 3.1. Recall that
this filtration is given by,

FkA�E(2)∗ := Fp{m | λ(m)≤ k}
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and that the filtration is increasing. Equations (2.14), (2.15), (2.16) show
that this is a filtration by E(2)∗-comodules. Furthermore, the filtration
quotients necessarily have a trivial coaction, in light of Proposition 3.5.
The filtration F• gives rise to the following unrolled exact couple:

ExtE(2)∗
(FnA�E(2)∗) ExtE(2)∗

(Fn+1A�E(2)∗)

Ext(Fn+1A�E(2)∗/FnA�E(2)∗)

.

This yields a convergent spectral sequence

E s ,t ,n
1 = Exts ,t

E(2)∗
(FnA�E(2)∗/Fn−1A�E(2)∗) =⇒ Exts ,t

E(2)∗
(A�E(2)∗)

which we deem the length spectral sequence. Since the filtration quotients
have trivial coaction, one finds that

E∗,∗,n1
∼= Fp[v0, v1, v2]{m | λ(m) = n}.

Thus, the E1-page is given by

E∗,∗,∗1 = E0A�E(2)∗⊗Fp[v0, v1, v2].

Since the d1-differential is essentially the connecting homomorphism in
Ext groups, an elementary cobar complex argument shows that on a mono-
mial m, one has

d1(m) = v0 ·Q0m+ v1 ·Q1m+ v2 ·Q2m.

From this we deduce that ExtE(2)∗
(A�E(2)∗) has relations of the form

v0Q0(m)+ v1Q1(m)+ v2Q2(m) = 0

for any monomial m. In particular, if m is of length 0 (i.e. consists only
of ζ ’s), then we obtain from d1(mτ2) the relation

v2ζ
p2

1 m+ v1ζ
p

2 m+ v0ζ3m = 0

In particular, these relations imply that for a monomial generator m of
Ext, we should have the following type of relations

(5.12) v2m+ v1ζ
p

2 ζ
−p2

1 m+ v0ζ3ζ
−p2

1 m = 0.

Of course, this relation does not make sense if ζ p2

1 does not divide the
monomial m, and we will deal with these separately.

Example 5.13. Consider the case when p = 3 and m = ζ 9
1 ζ3. This is an

element in Ext0 of
M2(18)∼=Σ72`6.
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The above implies that we have the following relation in Ext(Σ72`6),

v2ζ
9

1 ζ3+ v1ζ
3

2 ζ3+ v0ζ
2

3 = 0.

The reader might notice, based on the explicit p = 3 computations per-
formed in the next section, that each monomial appearing in this relation
is a generator of Ext(Σ72`6).

Remark 5.14. In [4], we showed that if m is a monomial generator of
Ext0 arising from R2 j−1A�E(1)∗ and for which ζ 8

1 divides m, then ζ −8
1 ζ 4

2 m
and ζ −8

1 ζ3m, are also generators. This required a great deal of tedious,
though elementary, arguments. The author strongly believes that similar
statements can be made in the odd p case, but refrains from doing so, as
the arguments would be even more tedious in the present case.

For the record, however, we provide the precise mathematical statement
we believe to be true: if m is a monomial generator which is an element
in the summand (5.8) and if ζ p2

1 divides m, then the monomials ζ −p2

1 ζ p
2 m

and ζ −p2

1 ζ3m are generators of Ext(Σpq j` j ). As evidence, one can look at
the explicit computations done in the next section and check directly.

As was already mentioned, one can only apply the relation (5.12) when
ζ p2

1 divides m. There are, however, monomial generators in (5.8) which

are not divisible by ζ p2

1 .

Example 5.15. Again, let p = 3 and consider the exact sequence

0→Σ48`1→Σ
36`3→ R2A�E(1)∗→Σ

21`0⊕Σ
25`0→ 0.

Then according to Lemma 5.9, the monomials which generate the sum-
mand

v−1
0 ExtE(1)∗

(Σ36BP 〈2〉
2
)⊆ v−1

0 ExtE(2)∗
(Σ36`3)

are ζ 9
1 ,ζ 6

1 ζ2 and ζ 3
1 ζ

2
2 . In this case, the job of the last term Σ21`0⊕Σ25`0

is to receive the v2-multiplications of ζ 6
1 ζ2 and ζ 3

1 ζ
2

2 . Note that these are
the only generators in this summand for which the relation (5.12) does not
apply.

To deal with v2-multiplication for these kinds of monomials, we need
to prove the analogue of [4, Corollary 3.38]. Before doing this, we first
describe and locate the monomial generators of the summand (5.8) which
are not divisible by ζ p2

1 .

Lemma 5.16. For the monomial generator

ζ a
1 ζ

i2
2 ζ

i3
3 ∈ v−1

0 ExtE(1)∗
(Σq(p2 j+pi)BP 〈2〉

p j−1
)⊆ v−1

0 ExtE(2)∗
(Σq(p2 j+pi)`p j+i )
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the exponent a is divisible p and satisfies the inequality

a ≥ pi + p.

In particular, if i = p−1, then a ≥ p2, in which case every monomial gener-
ator in v−1

0 ExtE(1)∗
(Σq(p2 j+pi)BP 〈2〉

p j−1
) is divisible by ζ p2

1 .

Proof. This follows from the description of a and the bound on i2+ pi3 in
Lemma 5.9. �

This lemma tells us that the there are p− i−1 different classes of mono-
mial generators in the summand 5.8 whose v2-multiple needs to be re-
solved. They are the monomials of the form

ζ pi+p
1 ζ i2

2 ζ
i3

3 ,ζ pi+2 p
1 ζ i2

2 ζ
i3

3 , . . . ,ζ p2−p
1 ζ i2

2 ζ
i3

3 .

Proposition 5.17. Let i ∈ {0, . . . , p − 2}, and let M :=
⊕p−1

k=i+1 M2(p( j −
1) + k). Then the monomials m ∈ v−1

0 ExtE(1)∗
(Σq(p2 j+pi)BP 〈2〉

p j−1
) which

are not divisible by ζ p2

1 are precisely those which come from the summand
v−1

0 ExtE(1)∗
(Σq(p2 j+pi)M )⊆ v−1

0 ExtE(1)∗
(Σq(p2 j+pi)BP 〈2〉

p j−1
).

Proof. Recall that we have a direct sum decomposition

BP 〈2〉
p j−1
∼=

p j−1
⊕

s=1

M2(s).

Given a monomial generator ζ a
1 ζ

i2
2 ζ

i3
3 , one determines which summand it

comes from by calculating the weight of ζ i2
1 ζ

i3
2 , which is pi2+ p2i3. If this

monomial is not divisible by ζ p2

1 , then we have the inequality

pi + p ≤ a < p2.

From this and the description of a from Lemma 5.9 this is equivalent to

p j + i − p + 1= p( j − 1)+ i + 1≤ i2+ pi3

The lower bound implies that

i2+ pi3 ≤ p j − 1

as we saw in Lemma 5.9. �

We now need to determine some v2-extensions in the spectral sequence
(5.2) in the case when i = 0, . . . , p − 2. The odd primary analogue of [4,
Lemma 3.36] will be useful
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Lemma 5.18. For a given 0 ≤ i < p, let M :=
⊕p−1

k=i+1 M2(p( j − 1) + k).
Then the composite

M ⊗ E(τ2) A�E(2)∗ Rp j−1A�E(1)∗
κ π

is a morphism of E(2)∗-comodules.

Proof. The proof is the same as the proof of [4, Lemma 3.36], in particular
it follows from the proof of Lemma 4.19. �

Remark 5.19. Of course, when i = p − 1, then M = 0, and the lemma is
trivially true.

Corollary 5.20. Let j ≥ 1 and let 0≤ i < p. Let M be as above. Then there
is a the following commutative diagram in the category of E(2)∗-comodules:
in the case when i > 0,

Σq p j` j ⊗ `i `p j+i Rp j−1A�E(1)∗
⊕p−1

k=i+1Σ
ϕ( j ,k)` j−1

0 M M ⊗ E(τ2) M ⊗Fp{τ2}

where ϕ( j , k) is as in Lemma 4.19.

Corollary 5.21. Let k ∈ {i + 1, . . . , p − 1}. Consider the summand

v−1
0 ExtE(1)∗

(Σ(q(p
2 j+pi))M2(p j + i − k))⊆ v−1

0 ExtE(1)∗
(Σq(p2 j+pi)BP 〈2〉

p j−1
)

⊆ v−1
0 ExtE(1)∗

(Σq(p2 j+pi)`p j+i )

generated over Fp[v
±1
0 , v1] by monomials of the form

ζ pk
1 ζ i2

2 ζ
i3

3

with i2+ pi3 = p j + i − k. In the summand

v−1
0 ExtE(2)∗

(Σϕ(i , j ,k−i)+q(p2 j+pi)` j−1[1])⊆ v−1
0 ExtE(2)∗

(Σq(p2 j+pi)`p j+i )

let xk ,i denote the generator corresponding to ζ i
1 . Then in the E∞-page of the

spectral sequence (5.2) one has the following relation

v2ζ
pk

1 ζ i2
2 ζ

i3
3 = xk ,i3

.

Proof. The proof proceeds in essentially the same way as [4, Corollary
3.38]. Let us just mention that, since i − k ≤ −1, we have from Corol-
lary 4.10,

M2(p j + i − k)∼=Σq(p j+i−k)` j−1

since the floor of (p j + i − k)/p is j − 1. �
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5.2. Explicit computations at the prime p = 3. The purpose of this
subsection is to explicitly carry out the inductive method of calculation
produced in the previous section in the particular case when the prime is
3. Though we will mostly be working at p = 3, we will occasionally make
comments for general p. In this setting, q = 4.

To begin, Lemma 4.19 tells us that for j ≥ 1, we have the following three
exact sequences, where we write R3 j−1 for R3 j−1A�E(1)∗,
(5.22)

0 Σ12 j` j `3 j R3 j−1 Σ12 j+9` j−1⊕Σ12 j+13` j−1 0

(5.23) 0 Σ12 j` j ⊗ `1 `3 j+1 R3 j−1 Σ12 j+13` j−1 0

and

(5.24) 0 Σ12 j ⊗ `2 `3 j+2 R3 j−1 0 .

This produces spectral sequences of the form

(5.25) Σ48 j` j ⊕Σ
36 j R3 j−1⊕Σ48 j+9` j−1[1]⊕Σ

48 j+13` j−1[1] =⇒ Σ
36 j`3 j

(5.26) Σ48 j+12` j ⊗ `1⊕Σ
36 j+12R3 j−1⊕Σ48 j+25` j−1[1] =⇒ Σ

36 j+12`3 j+1

and

(5.27) Σ48 j+24` j ⊗ `2⊕Σ
36 j+24R3 j−1 =⇒ Σ36 j+24`3 j+2.

The extra suspensions arise because our inductive method is actually com-
puting the ExtE(2)∗

-groups of the comodules M2(9 j + 3i) and we have the
identification

M2(9 j + 3i)∼=Σ36 j+12i`3 j+i .

Recall that

A�E(1)∗ = P (ζn | n ≥ 1)⊗ E(τk | k ≥ 2)

and that the weight is given by

wt(ζn) =wt(τn) = 3n.

Since the ζn’s are E(2)∗-comodule primitives, the first few `i are trivial
E(2)∗-comodules. In particular,

`0 = F3{1},
`1 = F3{1,ζ1},
`2 = F3{1,ζ1,ζ

2
1 }.



30 D. CULVER

The first interesting `i is `3, whose underlying F3-vector space is

`3 = `2⊕F3{ζ
3

1 ,ζ2,τ2},
and the only non-primitive basis element is τ2. Recall that the coaction on
τ2 is given by

α(τ2) = 1⊗τ2+τ0⊗ ζ2+τ1⊗ ζ
3

1 +τ2⊗ 1.

Examples 5.28. We provide a few more examples of the modules ` j :

`4 = `3⊕F3{ζ
4

1 ,ζ1ζ2,ζ1τ2},
`5 = `4⊕F3{ζ

5
1 ,ζ 2

1 ζ2,ζ
2

1 τ2},
`6 = `5⊕F3{ζ

6
1 ,ζ 3

1 ζ2,ζ
3

1 τ2,ζ
2

2 ,ζ2τ2},
`7 = `6⊕F3{ζ

7
1 ,ζ 4

1 ζ2,ζ
4

1 τ2,ζ1ζ
2

2 ,ζ1ζ2τ2},
`8 = `7⊕{ζ

8
1 ,ζ 5

1 ζ2,ζ
5

1 τ2,ζ
2

1 ζ
2

2 ,ζ 2
1 ζ2τ2},

`9 = `8⊕F3{ζ
9

1 ,ζ 6
1 ζ2,ζ

6
1 τ2,ζ

3
1 ζ

2
2 ,ζ 3

1 ζ2τ2,ζ
3

2 ,ζ 2
2 τ2,τ3}.

More generally, one sees that for 0≤ i < p that

`p j+i = `p j ⊗ `i = `p j ⊗Fp{1,ζ1, . . . ,ζ
i

1 }.

The reader will notice that ζn and τn will make their first appearance in
the comodules `pn−1 .

We now provide a tabulation of the generators which appear in the in-
ductive spetral sequences 5.2. In the table below, summands of the form
R3 j−1A�E(1)∗ are implicitly understood to be modules over F3[v

±
0 , v1].

Terms with hidden v2-extensions are indicated in red.

`0 : F3 : 1

Σ12`1 : Σ12`1 : ζ 3
1 ,ζ2

Σ24`2 : Σ24`2 : ζ 6
1 ,ζ 3

1 ζ2,ζ
2

2

Σ36`3 : Σ36R2A�E(1)∗ : ζ 9
1 ,ζ 6

1 ζ2,ζ
3

1 ζ
2

2

Σ48`1 : {ζ 3
2 ,ζ3}

Σ57`0[1]⊕Σ
62`0[1] : v2ζ

6
1 ζ2, v2ζ

3
1 ζ

2
2

Σ48`4 : Σ48R2A�E(1)∗ : ζ 12
1 ,ζ 9ζ2,ζ

6
1 ζ

2
2

Σ60`1⊗ `1 : {ζ 3
2 ,ζ3} · {ζ

3
1 ,ζ2}

Σ69`0[1] : v2ζ
6

1 ζ
2

2

Σ60`5 : Σ60R2A�E(1)∗ : ζ 15
1 ,ζ 12

1 ζ2,ζ
9

1 ζ
2

2
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Σ72`1⊗ `2 {ζ 3
2 ,ζ3} · {ζ

6
1 ,ζ 3

1 ζ2,ζ
2

2 }
Σ72`6 : Σ72R5A�E(1)∗ : ζ 18

1 ,ζ 15
1 ζ2,ζ

12
1 ζ

2
2 ,ζ 9

1 ζ
3

2 ,ζ 9
1 ζ3,ζ

6
1 ζ

4
2 ,ζ 6

1 ζ2ζ3,ζ
3

1 ζ
5

2 ,ζ 3
1 ζ

2
2 ζ3

Σ96`2 : ζ 6
2 ,ζ 3

2 ζ3,ζ
2

3

Σ105`1[1]⊕Σ
109`1[1] : v2ζ

6
1 ζ

4
2 , v2ζ

6
1 ζ2ζ3, v2ζ

3
1 ζ

5
2 ,ζ 3

1 ζ
2

2 ζ3

Σ84`7 : Σ84R5A�E(1)∗ : ζ 21
1 ,ζ 18

1 ζ2,ζ
15

1 ζ
2

2 ,ζ 12
1 ζ

3
2 ,ζ 9

1 ζ
4

2 ,ζ 12
1 ζ3,ζ

6
1 ζ

5
2 ,ζ 9

1 ζ2ζ3,ζ
6

1 ζ
2

2 ζ3

Σ108`2⊗ `1 : {ζ 6
2 ,ζ 3

2 ζ3,ζ
2

3 } · {ζ
3

1 ,ζ2}
Σ117`1[1] : v2ζ

6
1 ζ

5
2 ,ζ 6

1 ζ
2

2 ζ3

Σ96`8 : Σ96R5A�E(1)∗ : ζ 24
1 ,ζ 21

1 ζ2,ζ
18

1 ζ
2

2 ,ζ 15
1 ζ

3
2 ,ζ 12

1 ζ
4

2 ,ζ 15
1 ζ3,ζ

9
1 ζ

5
2 ,ζ 12

1 ζ2ζ3,ζ
9

1 ζ
2

2 ζ3

Σ120`2⊗ `2 {ζ 6
2 ,ζ 3

2 ζ3,ζ
2

3 } · {ζ
6

1 ,ζ 3
1 ζ2,ζ

2
2 }

Σ108`9 : Σ108R8A�E(1)∗ : ζ 27
1 ,ζ 24

1 ζ2,ζ
21

1 ζ
2

2 ,ζ 18
1 ζ

3
2 ,ζ 15

1 ζ
4

2 ,ζ 18
1 ζ3,ζ

12
1 ζ

5
2 ,ζ 15

1 ζ2ζ3,ζ
9

1 ζ
6

2 ,

ζ 12
1 ζ

2
2 ζ3,ζ

6
1 ζ

7
2 ,ζ 9

1 ζ
3

2 ζ3,ζ
3

1 ζ
8

2 ,ζ 6
1 ζ

4
2 ζ3,ζ

9
1 ζ

2
3 ,

ζ 3
1 ζ

5
2 ζ3,ζ

6
1 ζ2ζ

2
3 ,ζ 3

1 ζ
2

2 ζ
2

3

Σ144R2A�E(1)∗ : ζ 9
2 ,ζ 6

2 ζ3,ζ
3

2 ζ
2

3

Σ156`1 : ζ 3
3 ,ζ4

Σ165`0[1]⊕Σ
169`0[1] : v2ζ

6
2 ζ3, v2ζ

3
2 ζ

2
3

Σ153`2[1]⊕Σ
157`2[1] : v2ζ

6
1 ζ

7
2 , v2ζ

3
1 ζ

8
2 , v2ζ

6
1 ζ

4
2 ζ3, v2ζ

3
1 ζ

5
2 ζ3,ζ

6
1 ζ2ζ

2
3 ,ζ 3

1 ζ
2

2 ζ
2

3 .
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