MATH 347 Worksheet 1

Friday 9/14/18

Prove the following.
(1) If $x^{2}+y^{2}$ is even, then $x+y$ is even.
(2) Let a, b, n be natural numbers. Show that if n does not divide $a b$ then n does not divide a and n does not divide b.
(3) Let $x \in \mathbb{Z}$. If $x^{2}-6 x+5$ is even, then x is odd. (there are two proof techniques you can use. Find both proofs.)
(4) Let n be a natural number. Suppose that $n=m \ell$ for natural numbers m and ℓ different from 1 . Then m or ℓ is no more than \sqrt{n}.
(5) Use the previous problem to show the following: Suppose that n is a composite natural number (i.e. not prime or 1). Then there is a prime divisor of n which is no more than the square root of n.
Also, consider the following.

- (Russell's Paradox) Consider the following expression.

$$
U:=\{x \mid x \notin x\} .
$$

(1) Discuss what this expression means.
(2) Show that U cannot possibly be a set. Accomplish this by asking whether or not $U \in U$. What do you find? How does this show that U cannot be a set?
The last problem is known as Russell's paradox. It is meant to indicate why, when we define a set

$$
X:=\{x \in S \mid P(x)\}
$$

we must always specify a set S before hand. To elaborate, we cannot arbitrarily form sets by collecting all sets satisfying $P(x)$, we must confine ourselves to the formation of sets whose elements vary over a given set S satisfying some property $P(x)$.

