## MATH 347 Worksheet 2

## Friday 9/21/18

Prove the following.
(1) Suppose that $x_{1}, \ldots, x_{n}$ are real numbers in the closed interval $[0,1]$. Show that we have the inequality

$$
\prod_{i=1}^{n}\left(1-x_{i}\right) \geq 1-\sum_{i=1}^{n} x_{i} .
$$

(2) Show that for $n \geq 4$ one has $n$ ! $>2^{n}$.
(3) Show that the identity $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(4) Let $\left\{a_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers. Show that one has the following identity: $\left|\sum_{i=1}^{n} a_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|$.
(5) Suppose you have a chess board of dimensions $2^{n} \times 2^{n}$. Suppose you have $L$-shaped tiles consisting of three chess squares. Show that you can cover the chessboard with these $L$-tiles in such a way that you le[11pt]amsart hyperref [equation] Theorem [equation]Corollary [equation]Lemma [equation]Proposition [equation]Observation [equation]Remark
Theorem Corollary Lemma Proposition Notation
[equation]Definition [equation]Example [equation]Examples [equation]Remark [equation]Claim [equation]Question [equation]Conjecture Exercise
Definition Example Examples Remark Claim Conventions
MATH 347 Worksheet 2
Friday 9/21/18

Prove the following.
(a) Suppose that $x_{1}, \ldots, x_{n}$ are real numbers in the closed interval $[0,1]$. Show that we have the inequality

$$
\prod_{i=1}^{n}\left(1-x_{i}\right) \geq 1-\sum_{i=1}^{n} x_{i}
$$

(b) Show that for $n \geq 4$ one has $n!>2^{n}$.
(c) Show that the identity $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(d) Let $\left\{a_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers. Show that one has the following identity: $\left|\sum_{i=1}^{n} a_{i}\right| \leq \sum_{i=1}^{n}\left|a_{i}\right|$.
(e) Suppose you have a chess board of dimensions $2^{n} \times 2^{n}$. Suppose you have $L$-shaped tiles consisting of three chess squares. Show that you can cover the chessboard with these $L$-tiles in such a way that you leave only one specified square uncovered.

