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Prove the following.

(1) Suppose that x1, . . . , xn are real numbers in the closed interval [0, 1]. Show that we
have the inequality

n󰁜

i=1

(1− xi) ≥ 1−
n󰁛

i=1

xi.

(2) Show that for n ≥ 4 one has n! > 2n.

(3) Show that the identity
󰁓n

i=1 i
2 = n(n+1)(2n+1)

6 .
(4) Let {ai}∞i=1 be a sequence of real numbers. Show that one has the following identity:

|
󰁓n

i=1 ai| ≤
󰁓n

i=1 |ai|.
(5) Suppose you have a chess board of dimensions 2n× 2n. Suppose you have L-shaped

tiles consisting of three chess squares. Show that you can cover the chessboard with
these L-tiles in such a way that you le[11pt]amsart hyperref
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Prove the following.
(a) Suppose that x1, . . . , xn are real numbers in the closed interval [0, 1]. Show

that we have the inequality
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i=1

(1− xi) ≥ 1−
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i=1

xi.

(b) Show that for n ≥ 4 one has n! > 2n.

(c) Show that the identity
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2 = n(n+1)(2n+1)
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(d) Let {ai}∞i=1 be a sequence of real numbers. Show that one has the following

identity: |
󰁓n

i=1 ai| ≤
󰁓n

i=1 |ai|.
(e) Suppose you have a chess board of dimensions 2n × 2n. Suppose you have

L-shaped tiles consisting of three chess squares. Show that you can cover the
chessboard with these L-tiles in such a way that you leave only one specified
square uncovered.
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