## MATH 347 Worksheet 3

## Friday 9/21/18

Prove the following.
(1) Let $f: X \rightarrow Y$ be a function. Suppose that there are functions $g, b: Y \rightarrow X$ with the property that $f \circ g=i d_{Y}$ and $b \circ f=i d_{X}$. Show that $g=b$ and that $f$ is hence invertible.
(2) Show that a function $f: X \rightarrow Y$ is injective and if and only if there is a function $g: Y \rightarrow X$ such that $g \circ f=1_{X}$. Likewise, show that $f$ is surjective if and only if there is a function $h: Y \rightarrow X$ such that $f \circ h=1_{Y}$.
(3) Show that the composition of two injections is injective. Show that the composition of two surjections is surjective. Conclude that the composite of two bijections is a bijection.
(4) Let $a, b, c, d \in \mathbb{R}$ such that $a d-b c \neq 0$ and consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=(a x+b y, c x+d y) .
$$

Show that this function is a bijection.
(5) Show that the sets $\mathbb{N}$ and $\mathbb{N} \backslash\{0\}$ have the same cardinality.
(6) Suppose that $X=A \cup B$ and that we have functions $f: A \rightarrow Y$ and $g: B \rightarrow Y$. Under what conditions is there a function $b: X \rightarrow Y$ with the property that $b(a)=f(a)$ when $a \in A$ and $b(b)=g(b)$ when $b \in B$.
(7) Let $f: X \rightarrow Y$ be a function and $A \subseteq X$. The restriction of $f$ to $A$ is the unique function $\left.f\right|_{A}: A \rightarrow Y$ with the property that for each $a \in A$, we have $\left.f\right|_{A}(a)=f(a)$. Show that if $f: X \rightarrow Y$ is a bijection and if $f(A)=B \subseteq Y$, then $\left.f\right|_{A}$ is a bijection from $A$ to $B$.

