MATH 347 Worksheet 3 Friday 9/21/18

Prove the following.

- (1) Let $f : X \to Y$ be a function. Suppose that there are functions $g, h : Y \to X$ with the property that $f \circ g = id_Y$ and $h \circ f = id_X$. Show that g = h and that f is hence invertible.
- (2) Show that a function f : X → Y is injective and if and only if there is a function g : Y → X such that g ∘ f = 1_X. Likewise, show that f is surjective if and only if there is a function h : Y → X such that f ∘ h = 1_Y.
- (3) Show that the composition of two injections is injective. Show that the composition of two surjections is surjective. Conclude that the composite of two bijections is a bijection.
- (4) Let $a, b, c, d \in \mathbb{R}$ such that $ad bc \neq 0$ and consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(x, y) = (ax + by, cx + dy).

Show that this function is a bijection.

- (5) Show that the sets \mathbb{N} and $\mathbb{N} \setminus \{0\}$ have the same cardinality.
- (6) Suppose that X = A ∪ B and that we have functions f : A → Y and g : B → Y. Under what conditions is there a function h : X → Y with the property that h(a) = f(a) when a ∈ A and h(b) = g(b) when b ∈ B.
- (7) Let f : X → Y be a function and A ⊆ X. The *restriction of f to A* is the unique function f|_A : A → Y with the property that for each a ∈ A, we have f|_A(a) = f(a). Show that if f : X → Y is a bijection and if f(A) = B ⊆ Y, then f|_A is a bijection from A to B.