MATH 402 Worksheet 4

Friday 2/16/18

Exercise 1. Suppose that Γ and Γ^{\prime} are circles with center O and O^{\prime} respectively. We say that Γ and Γ^{\prime} are mutually tangent at a point T if they share a common tangent line passing through T. Suppose that Γ and Γ^{\prime} are mutually tangent circles which lie on opposite sides of the common tangent (we say they are externally tangent at T in this case), show that the line $O O^{\prime}$ passes through T. (Hint: You may assume the triangle inequality.)
Exercise 2. Given a line ℓ and a point B on ℓ and a point A not on ℓ, construct a circle passing through A and B which is tangent to the line ℓ.
Exercise 3. Using Hilbert's axioms (specifically the ones for congruence of line segments), show the following:
(1) Given three points A, B, C on a line with $A * B * C$, and given points E, F on a ray originating from D, suppose that $D E \cong A B$ and $A C \cong D F$. Then E will be between D and F and $B C \cong E F$. For this reason, we regard $B C$ as the difference of $A C$ and $A B$.
(2) Provide a definition for the sum of line segments: Given segments $A B$ and $C D$, define what one means by $A B+C D$.
(3) Try to prove the following: Given $A B \cong A^{\prime} B^{\prime}$ and $C D \cong C^{\prime} D^{\prime}$, then $A B+C D \cong A^{\prime} B^{\prime}+C^{\prime} D^{\prime}$.

