MATH 402 Worksheet 8

Friday 4/13/18

Definition 1. A Saccheri quadrilateral $A B C D$ with congruent sides $A C$ and $B D$, such that both sides are perpendicular to the base $A B$. The midline is the line segment joining the midpoint of $A B$ to the mid point of $C D$.

Exercise 1. Show that the top angles of a Saccheri quadrilateral are congruent and that the midline intersects $A B$ and $C D$ are right angles.

Exercise 2. Let $A B C D$ Be a quadrilateral so that the sides $A C$ and $B D$ intersect $A B$ at right angles, but so that the sides are not congruent. Show that the angle at C is greater than the angle at D if and only if $A C<B D$.

Exercise 3. Let $A B C D$ be a Saccheri quadrilateral. Let P be a point on the segment $C D$ an let $P Q$ be perpendicular to $A B$. Let α be the angle at A (which is equal to the angle at D). Show that
(1) If $P Q<B D$ then α is acute,
(2) If $P Q=B D$, then α is a right angle, and
(3) If $P Q>B D$, then α is obtuse.

