
CHROMATIC HOMOTOPY THEORY

D. CULVER

CONTENTS

1. The Classical Adams spectral sequence 2
1.1. The Construction 2
1.2. The E2-term 7
1.3. Convergence of the classical ASS 8
1.4. Independence of the resolution 13
2. The generalized Adams spectral sequence 13
3. Computations with the classical Adams spectral sequence 15
3.1. Review of the Steenrod algebra 15
3.2. Some computations 23
3.3. The May spectral sequence 28
3.4. Adams Vanishing and Periodicity 35
3.5. Other computational techniques 39
3.6. An Adams differential 41
4. Complex-Oriented cohomology theories, Quillen’s Theorem,

and Brown-Peterson theory 42
4.1. Complex-oriented Cohomology Theories 42
4.2. The Universal Formal Group Law and Lazard’s Theorem 58
4.3. Quillen’s Theorem 60
4.4. The ring MU∗MU 60
4.5. The Brown-Peterson spectrum 60
4.6. Formulas in BP -theory 60
4.7. Formal groups 61
4.8. Height of a p-typical formal group 62
5. The algebraic chromatic spectral sequence 66
5.1. Big picture 66
5.2. Algebraic construction 66
6. Morava’s Change of Rings 66
7. The topological structure 66
Appendix A. Stacks and Hopf algebroids 66
A.1. Stacks 66
A.2. Flat Hopf algebroids and stacks 72
A.3. Quasi-coherent sheaves and comodules 75

1



2 D. CULVER

A.4. Cohomology and Ext 75
References 75

1. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

In this section of the notes we will give an overview of the classical
Adams spectral sequence. Namely, we will discuss what it is as well as what
it calculates. We will briefly discuss issues of convergence and describe its
E2-term.

1.1. The Construction. Throughout this section, we will let H denoted
HFp for some prime p.

Question 1.1. Given a spectrum X , how can we compute its homotopy
groups π∗X ? Can we do this starting with knowledge about H ∗X ?

Recall that if X is a spectrum, then H ∗X is a module over the Steenrod
algebra A. Indeed, suppose ϑ ∈ A∗ is a stable cohomology operation, and
x ∈ H ∗X is a cohomology class, then x is represented by a morphism
X → Σn H and ϑ by a morphism ϑ : H → Σk H . Thus, we obtain a new
map ϑ · x by

X ΣnH Σn+k H .x ϑ

Since the action by A is defined by post-composition, it gives a left action
of A on H ∗X . Thus, we have

Proposition 1.2. The functor H ∗ takes values in graded left A-modules.

Here is the idea of the Adams spectral sequence. Suppose we have a
spectrum X and we have a homotopy class α : Sn→X . How could we tell
if α is non-trivial? Well, if the composite

Sn X ' S0 ∧X H ∧Xα η∧X

is non-trivial then α is nontrivial. Note that the second morphism is the
Hurewicz map

h :π∗X →H∗X .

However, the Hurewicz map will fail to see most elements in π∗X .

Example 1.3. If α : S0→ S0 is the degree n map, then h( f ) 6= 0 if and only
if (n, p) = 1. However, we know that π∗S

0 is non-zero in infinitely many
degrees.
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On the other hand, if h(α) = 0, then α lifts to a map eα : Sn→Σ−1H∧X .
Here, H is the cofibre of the unit map η : S → H . Thus, we have built a
diagram

Sn

X Σ−1H ∧X

H ∧X H ∧H ∧X .

α eα

The morphism α is nonzero provided eα is non-zero To check that eα is the horizonal
map could be
zero... say bet-
ter.

the horizonal
map could be
zero... say bet-
ter.

non-trivial, we consider the composite

Sn Σ−1H ∧X H Σ−1H ∧H ∧X .eα

IF this is nonzero, then eα is non-zero, and so α is nonzero. If, on the other
hand, it is zero, then we repeat the process. This suggests the following
diagram,

X Σ−1H ∧X Σ−2H
∧2 ∧X · · ·

H ∧X Σ−1H ∧H ∧X Σ−2H ∧H
∧2 ∧X

.

Applying the functor π∗ yields an exact couple with

π∗X π∗Σ
−1H ∧X π∗Σ

−2H
∧2 ∧X · · ·

H∗X π∗Σ
−1H ∧H ∧X π∗Σ

−2H ∧H
∧2 ∧X

.

More explicitly, we have an exact couple with D s ,t
1 := πt−s H

∧s ∧X and
E s ,t

1 :=πt−s H ∧H
∧s ∧X .

So we have produced a spectral sequence! But there are two obvious
questions that immediately arise.

Question 1.4.
(1) Does this spectral sequence converge, and if so, to what?
(2) Can we give a nice description of the E2-term?

Thus far, we have actually constructed something called the canonical
Adams resolution. We would like to have a more general notion of an
Adams resolution. First, let me state the theorem.
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Theorem 1.5. [Adams] Let X be a spectrum, then there is a spectral sequence
E s ,t

r (X ) with differentials

dr : E s ,t
r (X )→ E s+r,t+r−1

r (X )

such that
(1) E s ,t

2
∼= ExtA(H

∗X ,Fp),
(2) if X is a spectrum of finite type, then this spectral sequence converges

strongly (in the sense of Boardmann) to π∗(X )⊗Zp .

We need the following standard facts.

Proposition 1.6. The following are true.
• H∗X ∼=π∗(H ∧X ),
• H ∗X ∼= [X , H ]∗,
• H ∗H =A,
• If K =

∨

α
Σ|α|H is a locally finite wedge of suspensions of Eilenberg-

MacLane spectra, then

π∗K ∼=
⊕

α

Σ|α|Fp
∼= homA(H

∗K ,Fp).

• If K is as above, then a map f : X → K determines a locally finite
collection { fα : X →Σ|α|H}α. Conversely, any locally finite collection
in H ∗X determines a map to such a generalized EM spectrum.
• If {xα}α ⊆ H ∗X is a locally finite collection which generates H ∗X as

an A-module, then the corresponding map f : X → K is a surjection
in cohomology,
• H ∧X is a generalized EM spectrum, it has a suspension of H for each

element of a basis for H ∗X . Also,

H ∗(H ∧X )∼=A⊗H ∗X ,

and the map

X ' S0 ∧X →H ∧X
induces the multiplication map

A⊗H ∗X →H ∗X

in cohomology.

Remark 1.7. If V is a graded Fp vector space, then we usually let HV
denote the generalized EM spectrum with π∗HV =V .

Definition 1.8. A mod p Adams resolution of a spectrum X is a collec-
tion of spectra Xs for each s ∈ N and maps gs : Xs+1 → Xs such that the
following conditions hold:
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• X0 =X ,
• If Ks := cofib(gs ), then Ks is a generalized EM-spectrum for some

mod p vector space,
• The induced map fs : Xs →Ks is a surjection in H ∗(−).

Remark 1.9. We usually express this data diagrammatically as follows.

X =X0 X1 X2 · · ·

K0 K1 K2

f0

g0

f1

g1

f2

g2

∂ ∂ ∂

where the hooks are cofibre sequences, and the dashed arrows are the con-
necting maps. In particular, ∂ : Ks →ΣXs+1.

Exercise 1. Show that canonical Adams resolution produced above is in
fact an example of an Adams resolution in the above sense.

Observation 1. There are several things to observe at this point. Note
first that since each Ks is a generalized EM spectrum on some mod p vec-
tor space, then H ∗Ks is a free A-module. Moreover, since fs induces a sur-
jection in cohomology, the long exact sequence of the cofibre sequence

Xs+1 Xs Ks
gs fs

degenerates into the following short exact sequence

0 H ∗(ΣXs+1) H ∗Ks H ∗Xs 0δ H ∗ fs

We can splice together these short exact sequence together to form an
exact sequence in the following manner.
(1.10)

H ∗(ΣX1)

0 H ∗(X ) H ∗(K0) H ∗(ΣK1) H ∗(Σ2K2) · · ·

H ∗(Σ2X2)

.

Since each of the H ∗(Ks ) is a free A-module, this is a projective resolution
of H ∗X in A-modules.

Exercise 2. Show that any free resolution of H ∗X in A-modules arises in
this manner from an Adams resolution.
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Remark 1.11. This is, in fact, the way Adams originally thought about
Adams resolutions. If you look at the original paper, [1], Adams is really
just trying to build spectrum level version of a free resolution of H ∗X .
However, the language in that paper is a little clunky from the modern
perspective as it is before spectra became mainstream. Thus, Adams is
trying to build the resolution in spaces, but he can only do so in a range.

Now from an Adams resolution, we obtain an exact couple by setting
D s ,t

1 :=πt−s (Xs ) and E s ,t
1 :=πt−s (Ks ). This gives an exact couple

D∗∗1 D∗∗1

E∗∗1

i1

j1k1

where

i1 :=πt−s (gs ) : D s+1,t+1
1 =πt−s (Xs + 1)→πt−s (Xs ) =D s ,t

1

j1 =πt−s ( fs ) : D s ,t
1 =πt−s (Xs )→πt−s (Ks ) = E s ,t

1

and
k1 =πt−s∂ : E s ,t

1 =πt−s (Ks )→πt−s−1(Xs+1) =D s+1,t
1

This of course produces a spectral sequence {E s ,t
r (X ), dr } in the usual

manner. Let’s now figure out the direction of the differentials.

Proposition 1.12. The differentials in the spectral sequence constructed above
are of the form

dr : E s ,t
r → E s+r,t+r−1

r .

Remark 1.13. I will not give a completely rigorous argument, as that
would require me to write down far more diagrams then I wish to write.
The reader can find a more rigorous argument in [15].

Proof. We have the following diagram, where u = t − s .

πu(X ) πuX1 πuX2 · · ·

πuK0 πuK1 πuK2

πu f0

πu g0

πu f1

πu g1

πu f2

πu g2

∂ ∂ ∂
.

Suppose that x ∈ πu(Ks ) is an element which represents a class in E s ,t
r

of our spectral sequence. Thus, in particular, we have that d`(x) = 0
for all ` < r . The way an exact couple works, is that if this holds, then
the element ∂ x ∈ πu−1(Xs+1) lifts to πu−1(Xs+r ). Let Ý∂ x be such a lift.

Then dr [x] is defined to be the projection of πu−1( fs+r )(Ý∂ x) down to
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Er . Now note that πu−1( fs+r )(Ý∂ x) ∈ πu−1(Ks+r ), and so contributes to
E s+r,t ′

r , where t ′ − (s + r ) = u − 1 = t − s − 1. Thus t ′ = t + r − 1. So
dr [x] ∈ E s+r,t+r−1

r , as desired. �

Remark 1.14. Here is a diagrammatic way of writing this.

πt−s−1(X ) πt−s−1(Xs+r )

πt−s−1(Ks+r )

Zr

E s+r,t+r−1
r

⊆

put double
head in last ar-
row. and finish
diagram.

put double
head in last ar-
row. and finish
diagram.

Remark 1.15. In this context we usually draw the spectral sequences us-
ing the Adams indexing convention. That means that instead of drawing
spectral sequences with (t , s) indexing, we instead draw them with the in-
dexing (t − s , s). Then differentials dr always go to the left 1 and go up r .
So there is a direct relationship between the length of the differential and
what page it is on. draw picture...draw picture...

Observation 2. Note that, by contruction, that E s ,t
r = 0 if s < 0. Thus,

any E s ,t
1 can receive only a finite number of differentials. This allows us to

make the following identification,

E s ,t
∞ =

⋂

r>s

E s ,t
r .

1.2. The E2-term. Let’s figure out what the E2-term is. Let X be a spec-
trum and let (Xs , gs ) be an Adams resolution of X . Recall from the previ-
ous subsection, (1.10), that the cofibres Ks give us a resolution of H ∗X :

0←H ∗X ←H ∗K0←H ∗(ΣK1)←H ∗(Σ2Ks )← ·· · .
Since the Ks are generalized Eilenberg-MacLane spectrum on someFp -vector
space, it follows from Proposition 1.6 that H ∗Ks are free modules over the
Steenrod algebra. Since the above is an exact sequence, it follows that this
is a free resolution of H ∗X . We need to relate this to the E1-term somehow.

The first step in relating this to the E1-term is by using Proposition 1.6
to observe that

π∗Ks
∼= homA(H

∗Ks ,Fp).
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Note that the d1-differential is given by the composite

d1 =π∗( fs ◦ ∂ ) :π∗Ks →π∗ΣKs+1.

So we must relate these maps to the maps in the resolution (1.10). It is clear
from the construction of the resolution that d1-differential is the dual of
maps in the resolution. Thus, the E1-term can be equivalently expressed
as applying the functor homA(−,Fp) to the free resolution:

homA(H
∗K0,Fp)→ homA(H

∗ΣK1,Fp)→ homA(H
∗Σ2K2,Fp)→ homA(H

∗Σ3K3,Fp)→ ·· · .

Thus, this shows the following.

Proposition 1.16. For any spectrum X , the E2-term of the Adams spectral
sequence is given by ExtA(H

∗X ,Fp).

1.3. Convergence of the classical ASS. We now turn to the issue of con-
vergence of the Adams spectral sequence. We should first explain what this
means. Roughly speaking, we say a spectral “converges” when it actually
computes what we want it to; or rather we say it converges to G if it allows
us to compute G. A lot of the technical material in this subsection is taken
directly from [15], but I wholeheartedly recommend the influential paper
[5].

So what does that mean? Let’s reexamine what we have at hand with
the Adams spectral sequence a bit more. Let’s fix a spectrum X and let
(Xs , gs ) be an Adams resolution of X . Then, in particular, we have a tower
of spectra

· · · →Xs →Xs−1→ ·· ·X1→X0 =X

and we have the cofibres of these maps Ks . Now by definition, the E1-term
is the homotopy groups π∗Ks . To say that the spectral sequence “com-
putes” π∗X , or at least something related to π∗X , is to say that what ever
survives the spectral sequence actually gives an element of π∗X (or some-
thing related to π∗X ). We should make some definitions before proceed-
ing.

Definition 1.17. Let {Er , dr } be a spectral sequence. We say that an ele-
ment x ∈ E1 is a permanent cycle or an infinite cycle if dr x = 0 for all r . We
further say that x is a non-zero permanent cycle if there is no page Er and
no y ∈ Er so that dr y = x.

Remark 1.18. Intuitively, a permanent cycle is just a class x ∈ E1 which
never supports a differential on any subsequent page. Consequently, this
yields a class in E∞. To say that x is a non-trivial permanent cycle simply
means that x is never the target of a differential.
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Recall that, intuitavely, a class x ∈ π∗Ks survives to Er if there is a lift
Ý∂ x of ∂ x to Xs+r , and that dr x is roughly the projection of Ý∂ x toπ∗Ks+r .

Thus, dr x = 0 means that Ý∂ x can be lifted one further to π∗Xs+r+1. This
means, that a permanent cycle x has the property that ∂ x lifts to π∗Xs+r
for any r . Thus, ∂ x lifts to a class in the homotopy of holimXs .

Now we want it to be the case that if x is a permanent cycle then we
obtain an actual class in π∗X . Since we have a cofibre sequence

Xs+1 Xs Ks ΣXs+1
gs fs ∂

we would be able to lift x to an element ex ∈ π∗Xs provided that ∂ x = 0.
If this is the case, then we get an element of π∗X by looking at the image
of ex under the map

π∗Xs →π∗X .
Let us summarize the discussion thus far.
(1) We have seen that if x ∈ E s

1 = π∗Ks is a permanent cycle, then we
have produced a lift of ∂ x ∈π∗Xs+1 to the homotopy of holimXs ,

(2) In order get elements ofπ∗X , we were naturally led to consider the
filtration F sπ∗X defined by

F sπuX := im (πuXs →πuX ) .

Note that this is a decreasing filtration of π∗X .
In light of (1), in order to get actual elements of π∗X , we would want

holimXs ' ∗. If this is the case then if x ∈ E1 is a permanent cycle, then
∂ x lifts all the way to holimXs . As holimXs is contractible, this implies
that ∂ x ∼ 0. So x lifts to class ex in π∗Xs . We can now state what we mean
by convergence.

Definition 1.19. The Adams spectral sequence converges if the following
two conditions hold:

(1) lim←−s
F sπuXs =

⋂

s F sπuXs = 0, and
(2) There are isomorphisms E s ,t

∞
∼= E s

0πt−s X := F sπt−s X /F s+1πt−s X .

Remark 1.20. The first condition is phrased by saying that the filtration
F •πuX is a Hausdorff filtration.

Exercise 3. Show that there is always a map E s
0π∗X → E s ,∗

∞ (X ) for every
spectrum X . This map is always injective.

The second condition in the definition of convergence says that the rela-
tionship between the E∞-term of the spectral sequence and the homotopy
groups ofπ∗X is that the former gives an associated graded of the latter. So
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the E∞-term is still far from the actual answer we seek. However, there is
a way, at least in principal, to reconstructπuX from the associated graded.

In order to obtain πuX from the associated graded, we may proceed as
follows. Note that we have the short exact sequence

0→ F 1πuX → F 0πuX → E0,u
∞ (X )→ 0.

But this is not the best short exact sequence to think about; rather we
should mod out by F 2πuX to obtain the following short exact sequence

0→ F 1πuX /F 2πuX → F 0πuX /F 2πuX → E0,u
∞ (X )→ 0.

Note that the first term is just E1,u+1
∞ (X ). Once we determine F 0πuX /F 2πuX

we would like to determine F 0πuX /F 3πuX . Note that there is a short ex-
act sequence

0→ F 2πuX /F 3πuX → F 0πuX /F 3πuX → F 0πuX /F 2πuX → 0.

Again, note that the first term is the same as E2,u+2
∞ (X ).

Continuing in this way, we can in principle reconstruct πuX /F sπuX
for all s . Now, a priori, the filtration may be infinite, and so none of these
groups may be πuX . But observe that all of these groups fit into a tower,

πuX → ·· · →πu/F 3πuX →πuX /F 2πuX →πuX /F 1πuX .

So to obtainπuX , it seems reasonable to take the inverse limit lim←−s
πuX /F sπuX .

There is certainly a map

πuX → lim←−
s

πuX /F sπuX .

However, this map can fail to be an isomorphism. The following terminol-
ogy of Boardmann is especially useful for distinguishing between different
notions of convergence.

Definition 1.21 (cf. [5]). Let {Er , dr } be a spectral sequence with a filtered
target group G. We say that the spectral sequence

(1) converges weakly to G if the filtration exhausts G and we have iso-
morphisms E s

∞
∼= F s G/F s+1G,

(2) converges to G if (1) holds and the filtration is Hausdorff, and
(3) converges strongly if (2) and the natural map G→ lim←−s

G/F s G is an
isomorphism.

Lemma 1.22. If X is a spectrum with an Adams resolution (Xs , gs ) such that
holimXs ' ∗1 , then the Adams spectral sequence converges.

1Given a tower of spectra · · ·X2→X1→X0, the homotopy limit can be defined as the
fiber of the map

∏

s
Xs →

∏

Xs
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Proof. See Ravenel for the first part, [15].
Now let’s identify the E∞-term. Suppose [x] ∈ E s ,t

∞ is a non-zero class.
We first show that ∂s ,u(x) = 0. Since dr [x] = 0 for all r , the element ∂s ,u(x)
lifts to πu−1(Xs+r+1) for each r . Thus, ∂s ,u is necessarily in the image of
limπu−1(Xs+r ) = 0. So ∂s ,u(x) = 0. Thus the class x lifts to πu(Xs ).

It suffices to show that x has a non-trivial image in πu(X ). If not, let r
be the largest integer such that the image of x in πu(Xs−r+1) is nontrivial;
let its image be z. Then since the image of z under the map

πuXs−r →πuXs−r+1

is 0, it follows that there is a w ∈ πu+1(Ks−r ) such that ∂u+1,s−r (w) = z.
But this shows that dr [w] = x, contradicting the nontriviality of [x]. �

Thus, we are after a general condition on X which guarantees that there
is there is an Adams resolution (Xs , gs ) such that holims Xs ' ∗.

Lemma 1.23. Suppose that X is a connective spectrum with eachπi X a finite
p-group. Then any mod p Adams resolution (Xs , gs ) of X satisfies holims Xs .

Proof. See Ravenel [15]. �

Now we can show that the mod p Adams spectral sequence converges
to the p-adic homotopy groups of X . First, I need remind you of some
basic facts about Bousfield localization.

Theorem 1.24 (Bousfield). Let X be a spectrum and let S/p denote the mod add citationadd citation
p Moore spectrum. If X has finite homotopy groups, then the Bousfield local-
ization LS/pX has homotopy groups given by

π∗(LS/pX )∼=π∗(X )⊗Zp .

Moreover, the canonical map X → LS/pX induces the obvious map in homo-
topy groups.

Remark 1.25. For this reason, people often write X ∧p for LS/pX . Also, if
πi X is finite for each i , then

πi (X )⊗Zp
∼=πi (X )[p

∞],

that is π(X )⊗Zp is identified with the p-torsion in πi (X ).

proof of 1.5(2). It is required that we identify the E∞-term of the Adams
spectral sequence of X . �
which is id− g . Here g is the map defined so that its component on X j is given by

∏

Xs X j+1 X j .
p j+1 f j
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Example 1.26. Let X =HZ denote the integral Eilenberg-MacLane spec-
trum. There is clearly a cofiber sequence

X →X →H .

We then obtain a diagram

X X X · · ·

H H H

Its easy to check that this is an Adams resolution. In this case, the corre-
sponding Adams spectral sequence has

E s ,t
1 =

¨

Z/p s = t
0 s 6= t .

So there is no room for Adams differentials and the spectral sequence col-
lapses at E1. This shows that we have E s ,s

∞ =Z/p. In this case X ∧p =HZp .

Exercise 4. Show in this case that holims Xs is contractible after p-completion.

Remark 1.27. The Adams spectral sequence does not converge in general.
In particular, it is not typical for it to converge in the case when X is a non-
connective spectrum. For example, let X =KU be the complex K -theory
spectrum. Then it can be shown that H∗KU = 0. Thus, the E2-term of
the ASS for KU is 0. However, Bott showed that π∗KU ∼=Z[β±1], where
β ∈ π−2KU . So the Adams spectral sequence does not converge in this
case.

Exercise 5. The converse if the previous lemma is false: it is not the case
that if X is non-connective then it is necessarily the case that the Adams
SS fails to converge for X . Provide an example showing this.

Remark 1.28. The index s is often called Adams filtration, and if x ∈π∗X ,
then we say that the Adams filtration of x, denoted AF (x), is the least s such
that x ∈ F sπ∗X .

Now the entire discussion above, we applied the functorπ∗(−) = [S0,−]∗
to an Adams resolution. We could equally well have considered the func-
tor [Y,−]∗ for more general spectra Y . We find the following (see [5] for
more details).

Theorem 1.29. Let X be a spectrum of finite type and Y any spectrum. Then
there is a conditionally convergent spectral sequence

E s ,t
2 = ExtA(H

∗X , H Y ) =⇒ [Y,X ]∗⊗Zp .
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If H ∗Y is also bounded and finite for each ∗, then the spectral sequence con-
verges strongly.

Convergence of the Adams spectral sequence can be used to show the
following theorem of Margolis.

Theorem 1.30 (Margolis). Let X be any spectrum of finite type. Then the find citationfind citation
cohomology functor H ∗(−) induces an isomorphism

[H ,X ]∗→ homA(H
∗X ,A).

Proof. The hypothesis of the previous theorem are met, and so the Adams
spectral sequence

ExtA(H
∗X ,A) =⇒ [H ,X ]∗⊗Zp

converges. It is a result of Margolis that A is also an injective module over citecite
itself, and so the E2-term of this spectral sequence is concentrated in the
line s = 0. So there is no room for differentials and hence collapses at E2.
This gives the desired isomorphism. �

Exercise 6. Use this to show that DH , the Spanier-Whitehead dual of H ,
is trivial.

1.4. Independence of the resolution. Thus far, it seems that the Adams
spectral sequence depends on our choice of Adams resolution. We will
sketch an argument showing that, in fact, the spectral sequence is indepen-
dent of the choice of resolution from the E2-page onward.

Exercise 7. Show that if f : X → Y is a morphism of spectra and (Xs , gs )
and (Ys , hs ) are Adams resolutions of X and Y respectively, then there is
a morphism of Adams resolutions (Xs , gs )→ (Ys , hs ) which lifts f . You
should interpret this in the stable homotopy category of course.

Exercise 8. Deduce from the previous exercise that if f induces an isomor-
phism in mod p cohomology that the Adams spectral sequences for X and
Y are isomorphic on the E2-term onward (dependent on those chosen res-
olutions). Using that X → LS/pX is an isomorphism on mod p homology,
show that

2. THE GENERALIZED ADAMS SPECTRAL SEQUENCE

Let E be a ring spectrum. Then, as before, we can consider Adams reso-
lutions based on E . Just replace each instance of H in canonical resolution
for X . This gives rise to the canonical E-based Adams resolution of X .
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X Σ−1E ∧X Σ−2E
∧2 ∧X · · ·

E ∧X Σ−1E ∧ E ∧X Σ−2E ∧ E
∧2 ∧X

.

Applying π∗ gives a spectral sequence with E1-term

E s ,t
1 =πt−s E

∧s ∧X .

Unfortunately, we don’t automatically obtain an algebraic description
of the E2-term. We need an extra assumption, namely that E∗E is flat over
E∗.

Definition 2.1. A (commutative) Hopf algebroid over a commutative ring
k is a cogroupoid object in the category of (graded, bigraded) commutative
k-algebras. That is, its a pair (A,Γ ) so that the pair of functors (homk(A,−),homk(Γ ,−))
take values in groupoids.

By the Yoneda lemma this translates into structure maps

A Γ A
s

t

ε

ψ : Γ → Γ ⊗A Γ
and

c : Γ → Γ .
These maps correspond to the various maps relating morphisms and ob-
jects in a groupoid. For example, s and t correspond to the source and
target of a morphism, and ε corresponds to map which takes an object to
its identity morphism. The morphismψ arises from composition of com-
posable pairs in the groupoid. The morphism c arises since, in groupoids,
each arrow has an inverse.

Remark 2.2. In the literature, the maps s and t are often written as ηL and
ηR respectively, and they are called the left and right units.

The fact that (A,Γ ) is a cogroupoid implies a number of relations amongst
the morphisms above. For example,ψ is a coassociative since composition
in groupoids is associative. Another example is that

c ◦ηL = ηR

which comes from the fact that if we invert a morphism then we have
switched the source and target.

Definition 2.3. something something comodules... go read the goddamn
greenbook already! jeez
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Theorem 2.4. If E is a commutative ring spectrum such that E∗E is flat as
a module over E∗ (via ηL) then E∗E is a Hopf algebroid. Moreover, for any
spectrum X , the homology groups E∗X form a left comodule over E∗E.

Proof. For a proof, see Switzer 17.8. Better yet do it as an exercise! �

The key point in proving the above theorem is the observation that the
natural map

E∗E ⊗E∗
E∗X → E∗(E ∧X )

is an isomorphism. This is seen by noting that both sides form a homology
theory and that this natural transformation is an isomorphism when X =
S0.

Theorem 2.5. If (A,Γ ) is a Hopf algebroid such that Γ is flat as an A-module
(via ηL), then the category of left (A,Γ )-comodules is an abelian category with
enough injectives.

Proof. See [15, Theorem A1.1.3] and [15, Lemma A1.2.2] �

Theorem 2.6 (Adams). Let E be a ring spectrum such that E∗E is flat over E∗.
An E∗-Adams resolution for X leads to a natural spectral sequence {E∗∗r (X )}
with differentials dr : E s ,t

r → E s+r,t+r−1
r such that

• E s ,t
2 = Exts ,t

E∗E
(E∗, E∗X )

• the spectral sequence converges to π∗(X
∧
E ) if and only if lim1

r E s ,t
r = 0

for all s , t .

Proof. See Bousfield’s localization paper, section 6. �

Remark 2.7. Very often the E -nilpotent completion X ∧E of X can be iden-
tified with the Bousfield localization LE X .

3. COMPUTATIONS WITH THE CLASSICAL ADAMS SPECTRAL
SEQUENCE

First we describe how to calculate the Adams E2-term via the May spec-
tral sequence, which we calculate in a range. We then give an argument
showing that d2(h4) = h0h2

3 .

3.1. Review of the Steenrod algebra. Let’s recall some facts about the
Steenrod algebra. We continue to fix a prime p and let H denote the
Eilenberg-MacLane spectrum HFp .

Theorem 3.1. The Steenrod algebra A := [H , H ] is given by the following:
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(1) If p = 2, then A is the free graded associative F2-algebra generated by
the Steenrod operations Sqn in degree n modulo the Adem relations:
if a < 2b then

SqaSqb =
ba/2c
∑

i=0

�

b − i − 1
a− 2i

�

Sqa+b−i Sqi .

(2) If p > 2 then A is the free graded associative Fp -algebra generated
by the Bockstein β and the Steenrod power operations P n in degree
2(p − 1)n modulo the Adem relations:For a < p b then

P a P b =
∑

i

(−1)a+i
�

(p − 1)(b − i)− 1
a− pi

�

P a+b−i i

and for a ≤ p b

P aβP b =
∑

i

(−1)a+i
�

(p − 1)(b − i)
a− pi

�

βP a+b−i P i+
∑

i

(−1)a+i
�

(p − 1)(b − i)− 1
a− pi − 1

�

P a+b−iβP i .

Now the Steenrod algebra is not just an Fp -algebra, it is in fact a Hopf
algebra.

Definition 3.2. Let k be a commutative ring. A coalgebra over k is a
k-module Γ together with k-linear maps ε : Γ → k and ∆ : Γ → Γ ⊗k Γ ,
referred to as the augmentation and coproduct respectively, which are sub-
ject to the following conditions:

(1) the coproduct is counital, this means the following diagram com-
mutes

Γ ∼= k ⊗k Γ Γ ⊗k Γ Γ ⊗k k ∼= Γ

Γ

ε⊗Γ

∆
i di d

(2) the coproduct is coassociative, this means that the following dia-
gram commutes

Γ Γ ⊗ Γ

Γ ⊗ Γ Γ ⊗ Γ ⊗ Γ

∆

∆ ∆⊗Γ

Γ⊗∆

Definition 3.3. A k-bialgebra is a k-module Γ equipped with the structure
of an algebra η : k → Γ , µ : Γ ⊗ Γ → Γ and a coalgebra ε : Γ → k, ∆ : Γ →
Γ ⊗ Γ which satisfy the following compatibilities,
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(1) The following diagram commutes,

Γ ⊗ Γ Γ Γ ⊗ Γ

Γ ⊗ Γ ⊗ Γ ⊗ Γ Γ ⊗ Γ ⊗ Γ ⊗ Γ

µ

∆⊗∆

∆

Γ⊗τ⊗Γ

µ⊗µ

(2) the following diagram commutes,

Γ ⊗ Γ Γ

k ⊗ k ∼= k

ε⊗ε

µ

ε

(3) the following diagram commutes

k ∼= k ⊗ k Γ

Γ ⊗ Γ

η

η⊗η
∆

(4) the following diagram commutes

k Γ

k

η

i d ε

Exercise 9. Show that the above axioms imply, for example, that ∆ is a
morphism of algebras and µ is a map of coalgebras.

Definition 3.4. A Hopf algebra is a k-bialgebra Γ with a k-linear map χ :
Γ → Γ called the antipode or conjugation map which makes the following
diagram commute

Γ ⊗ Γ Γ ⊗ Γ

Γ k Γ

Γ ⊗ Γ Γ ⊗ Γ

χ⊗1

µ

ε

∆

∆

η

1⊗χ

µ

Remark 3.5. There is an obvious version of a graded Hopf algebra. Simply
let Γ be a graded k-algebra and require that ε and∆ be grading preserving
morphisms.
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Remark 3.6. In topology, we always work with graded Hopf algebras.
Very often, we even work with connective graded Hopf algebras; these are
graded Hopf algebras Γ such that Γn = 0 for n < 0 and Γ0 = k. In this
situation, we often ignore the antipode χ because it is necessarily uniquely
determined from the other structure. See May-Ponto for detailsadd specific

citation
add specific
citation Exercise 10. Another way of defining a Hopf algebra Γ over k is as a
Wait... is this
actually right
or are there
some extra hy-
pothesis that
are required?
like that we
restrict to
commutative
k-algebras?

Wait... is this
actually right
or are there
some extra hy-
pothesis that
are required?
like that we
restrict to
commutative
k-algebras?

cogroup object in k-algebras. This means that the functor

homk(Γ ,−) : Algk → Set

actually lifts to a functor into the category of groups. Using the Yoneda
lemma, show that this definition and the one given above are equivalent.

So how, exactly, is the Steenrod algebra a Hopf algebra? The augmenta-
tion is given by

ε : A→ F2; Sq i 7→ 0

and
∆ : A→A⊗F2

A; Sqn 7→
∑

i+ j=n

Sq i ⊗ Sq j .

Note that∆ is just given by the Cartan formula and that this makes A into
a Hopf algebra.

Exercise 11. Show that this makes A into a cocommutative Hopf algebra.

Now observe that A is locally of finite type. This means that in any given
degree, A is finite dimensional. A universal coefficient theorem argument
implies that

H∗H =π∗(H ∧H )∼= homFp
(A,Fp) =A∗.

The right hand term means we are taking the degree-wise Fp -linear dual.

Exercise 12. Suppose that Γ is a coassociative Hopf algebra over a field k
and that Γ is locally of finite type. Let Γ∗ denote the degreewise k-linear
dual. Show that Γ∗ is also a coassociative Hopf algebra. Show further that
if Γ is cocommutative, then Γ∗ is a commutative algebra.

So by this exercise, the dual of the Steenrod algebra, A∗ is a commutative
Hopf algebra over Fp . This observation is originally due to Milnor ([12]).
He showed that the dual Steenrod algebra has an especially nice algebra
structure.

Theorem 3.7 (Milnor, [12]). Let A∗ denote the dual Steenrod algebra. Then
A∗ is a commutative noncocommutative Hopf algebra. Moreover,
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(1) For p = 2, A∗ = P (ξ1,ξ2, . . .) where P () denotes a polynomial algebra
over Fp on the indicated generators, and |ξn|= 2n−1. The coproduct

∆ : A∗→A∗⊗A∗

is given by

∆ξn =
∑

i+ j=n

ξ 2i

j ⊗ ξi .

where ξ0 = 1.
(2) For p > 2, then

A∗ ∼= P (ξ1,ξ2, . . .)⊗ E(τ0,τ1, . . .)

where E() denotes an exterior algebra over Fp on the indicated gen-
erators, and |ξn| = 2(pn − 1) and |τn| = 2 pn − 1. The coproduct is
given by

∆ξn =
∑

i+ j=n

ξ p i

j ⊗ ξ j

and
∆τn = τn ⊗ 1+

∑

i+ j=n

ξ p i

j ⊗τi

(3) For all p, the conjugation map χ : A∗→A∗ is given by

χ (1) = 1

and
∑

i+ j=n

ξ p j

i χξ j = 0

and

τn +
n
∑

i+ j

ξ p j

i χτ j = 0

Now, in order to calculate with the Adams spectral sequence, we better
know how to calculate the E2-term. Given Milnor’s theorem, we often
prefer to calculate with homology and the dual Steenrod algebra. So we
want to dualize. This comes at a cost; we have to think of things in terms
of comodules rather than modules.

Definition 3.8. Let Γ be a Hopf algebra. Then a left comodule C over Γ is
a k-module equipped with a k-linear map

α : C → Γ ⊗C
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which makes the following diagrams commute

C Γ ⊗C

Γ ⊗C C ⊗ Γ ⊗ Γ

α

Γ⊗α

∆⊗C

and
C Γ ⊗C

k ⊗C ∼=C

α

i d
ε⊗C

Exercise 13. If M is an A-module which is locally finite, show that the
degreewise Fp -linear dual M ∗ is an A∗-comodule. Conclude that for rea-
sonable spectra X that H∗X is an A∗-comodule.

Now I have made the case that we want to use the dual Steenrod algebra
A∗ for computations, and I have indicated that we must work with comod-
ules rather than modules. But in order to make this viable for actually
computing anything, we need to be able to express the Adams E2-term in
terms of comodules. The nicest relationship that you could hope for is

ExtA(M ,Fp)∼= ExtA∗
(Fp , M ∗)

or more generally

ExtA(M ,N )∼= ExtA∗
(N ∗, M ∗).

Of course, this would require us to make sense of what Ext of comodules
means. In order to do that, we would have to argue that the category of
comodules is abelian with enough injectives or something like that. For
the time being let’s put these foundational issues aside and and just take for
granted that this can be done.

We should also explain a bit more how the Hopf algebra structure on
A∗ arises topologically. Recall that A∗ = π∗H ∧H . The coproduct for A∗
is given by

H ∧H 'H ∧ S0 ∧H →H ∧H ∧H .

The homotopy groups of the target of this map is

H∗(H ∧H )∼=H∗H ⊗H∗H ∼=A∗⊗A∗
by the Künneth theorem. If X is any spectrum, then we get that H∗X is a
comodule over A∗ via the following map

H ∧X 'H ∧ S0 ∧X →H ∧H ∧X .
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Again the target of this morphism has, by the Künneth theorem, homo-
topy groups given by the following

H∗(H ∧X )∼=H∗H ⊗H∗X ∼=A∗⊗H∗X .

Finally, the conjugation χ on A∗ is induced by the switching morphism

τ : H ∧H →H ∧H

In order to do some computations later, we need an expicit complex that
calculates ExtA∗

(Fp , H∗X ). This is given by the so-called cobar complex.

Definition 3.9. Let A∗ be kerε.

Definition 3.10. Let C be a comodule over A∗. The cobar complex C •A∗(C )
is defined by

C s
A∗
(C ) :=A

⊗s
∗ ⊗C .

We denote elements a1⊗ · · · ⊗ as ⊗ x by [a1| . . . |as]x. The differential d :
C s

A∗
(C )→C s+1

A∗
(C ) is defined by

d [a1 | · · · | as]x = [1 | a1 | · · · | as]x+
s
∑

i=1

(−1)i[a1 | · · · | ai−1 | a
′
i | a

′′
i | ai+1 | · · · | as]x+(−1)s+1[a1 | · · · | as | x

′]x ′′

where we have∆ai = a′i ⊗ a′′i and α(x) = x ′⊗ x ′′ ∈A∗⊗C .

Finally, before moving on, I want to state a useful theorem for compu-
tations.

Theorem 3.11 (Change-of-Rings Isomorphism). Let A be an algebra and
B ⊆ A a subalgebra such that A is flat over B as a right B-module. Let M be
a left B-module and let N be a left A-module. Then there is a natural isomor-
phism

Exts ,t
A (A⊗B M ,N )∼= Exts ,t

B (M ,N ).

Proof. Let P∗→ M be a B -free resolution. Then A⊗B P∗→ A⊗B M is an
A-free resolution of A⊗B M . The result follows because of the isomorphism

homA(A⊗B P∗,N )∼= homB(P∗,N ).
�

Definition 3.12. If A is an augmented k-algebra and B ⊆ A a subalgebra,
then we shall often write A�B for A⊗B k.

Using this notation, we then have

ExtA(A�B ,N )∼= ExtB(k ,N ).
Now suppose that A is connected graded Hopf algebra over a field k

which is locally finite, so that A∗ is also a Hopf algebra. If M and N are
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two A-modules which are locally finite, then M ∗ and N ∗ are comodules.
If B is a sub-Hopf algebra of A, then the tensor product M ⊗B N can be
described as the coequalizer

M ⊗B ⊗N M ⊗N M ⊗B N .

Dualizing leads us to the cotensor product.

Definition 3.13. Let B be a coalgebra. The cotensor product of a right
B -comodule M with a left B -comodule N is the equalizer

M �B N M ⊗N M ⊗B ⊗N .
αM⊗N

M⊗αN

Thus, in the context of a Hopf algebra we can dualize to get a new ver-
sion of the change of rings theorem.

Theorem 3.14. Let Γ be a Hopf algebra over a field k and Σ a Hopf algebra
quotient of Γ , in other words there is a surjective morphism A→ B of Hopf
algebras. If N is a left comodule over Σ, then

ExtA(k ,Γ �ΣN )∼= ExtΣ(k ,N ).

In the case N = k above, then we write Γ �Σ k as Γ �Σ. Here, we are
regarding k as a Σ-comodule via the unit map

η : k→Σ.

Exercise 14. Show, from the definition, that if Γ is a Hopf algebra over k
and M is a right Γ -comodule, then

M �Γ k = {x ∈M | α(x) = x ⊗ 1}.

Finally, I want to tell you about some important subalgebras of A as well
as some important elements in A.

Definition 3.15. Set Q0 := β to be the Bockstein element (when p = 2
this should be interpreted as Sq1). Inductively define elements by

Qk := [P pk
,Qk−1].

Example 3.16. Let p = 2. Then Q1 = [Sq2, Sq1], which is exactly the
element

Q1 = Sq2Sq1+ Sq3.

We also have

Q2 = [Sq4,Q1] = Sq4Sq2Sq1+ Sq7+ Sq5Sq2+ Sq6Sq1
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Theorem 3.17 (Milnor, [12]). The elements Qε0
0 Qε1

1 · · ·P
R form an additive

basis of A which, up to a sign, dual to the obvious basis for A∗. In particular
Q2

i = 0 and
Qi Q j +Q j Qi = 0.

Also, the elements Qi are primitive, this means that

∆(Qi ) =Qi ⊗ 1+ 1⊗Qi .

The up shot of this is that we can make the following definitions.

Proposition 3.18. Define E := E(Q0,Q1,Q2, . . .). Then E is a subHopf al-
gebra of A. The same is true for E(n) := E(Q0,Q1, . . . ,Qn).

Definition 3.19. Define A(n) := 〈β, P 1, . . . , P pn〉, the subalgebra of A gen-
erated by the elements β, P 1, . . . , P pn

.

Exercise 15. Show that this defines a subHopf algebra.

Theorem 3.20 (Milnor, [12]). The algebras A(n) are finite dimensional and
A= colimn A(n). Thus every element of A in positive degree is nilpotent.

Question 3.21. Is there a nice numerical function which describes, or at
least bounds, the order of the P n? This question is open as far as I know.

Since the A(n) are subalgebras of A, when we dualize we get that A(n)∗
is a quotient of A∗.

Theorem 3.22. As an algebra, for p = 2, we have

A(n)∗ =A∗/(ζ
2n+1

1 ,ζ 2n

2 , . . . ,ζ 22

n ,ζ 2
n+1,ζn+2, . . .)

3.2. Some computations. So let’s calculate π∗X for various spectra X .
Lets start by using the Adams spectral sequence to calculate HZ.

Theorem 3.23. There is an isomorphism

H ∗HZ∼=A�A(0) :=A⊗A(0) Fp

where A(0) is the subalgebra of A generated by the Bockstein element.

Note that A(0) is an exterior algebra E(β) where β is the mod p Bock-
stein. It can be shown that the dual A(0)∗ is a quotient of A∗ and it is given
by

A(0)∗ =
¨

E(ξ1) p = 2
E(τ0) p > 2.

Exercise 16. Let E(x) be an exterior algebra on a generator x in positive
degree over a field k. Show that

ExtE(x)(k , k)∼= k[y]



24 D. CULVER

where |y| = (1, |x|). (Hint: For this exercise, its useful to use a minimal
resolution to prove one part, and the cobar complex to prove the other.)

Thus, the E2-term of the Adams spectral sequence for HZ is given by

ExtA(A�A(0),Fp)∼= ExtA(0)(Fp ,Fp)∼= Fp[h0]

where h0 is in bi-degree (1,1). Thus the Adams spectral sequence collapses
at the E2-term. Now, we picture this as ...put picture

here.
put picture
here. Now because of the multiplicative structure, this shows that the exten-

sions can’t be trivial. Thus we have

π∗(HZ
∧
p)∼=Zp .

Theorem 3.24 (Milnor-Moore, Theorem 4.7 of [11]). If A is a connected
Hopf algebra over a field k, B a connected left A-comodule over A, C = k�AB
and the maps B → A and C → B are surjective and injective respectively,
then there exist a morphism h : A⊗C → B which is simultaneously an iso-
morphism of left A-comodules and right C -modules.

Theorem 3.25 (Thom). The homology of the Thom spectrum M O is givenAdd citationAdd citation
by H (M O;F2)∼=A∗⊗N where N is a polynomial algebra with one generator
in each degree not of the form 2k − 1 and is a trivial comodule. If p is odd,
then H∗(M O;Fp) = 0.

Proof. I guess you can also prove this using Milnor-Moore. All you need
to know (which is proved by Thom), is that the Thom class u : MO→H
is a surjection in homology. Milnor-Moore then implies that there is an
isomorphism of A∗-comodules

A∗⊗N ∼=H∗M O

where N = F2 �A∗
H∗M O. A degree counting argument then shows that

N has the claimed form. �

We can input this into the Adams spectral sequence. We obtain

ExtA∗
(H∗M O) =⇒ π∗M O.

By the proposition, we can rewrite the E2-term as

ExtA∗
(H∗M O)∼= ExtA∗

(A∗⊗N )∼= ExtA∗
(A∗)⊗N ∼=N .

Note that N is concentrated in Adams filtration 0. So there is no room for
differentials or hidden extensions. Thus, we find that

π∗M O ∼=N .
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Now let’s calculate the homotopy groups of M U . We need a few pre-
liminaries. Recall that we defined the Milnor primitives in the last section.
Then we have

P∗ :=A�E∗ =A∗�E∗
Fp =

¨

P (ξ 2
1 ,ξ 2

2 ,ξ 2
3 , . . .) p = 2

P (ξ1,ξ2,ξ3, . . .) p > 2

Observe the following.

Lemma 3.26. The subalgebra P∗ is a subHopf algebra of A∗.

Exercise 17. Prove this.

Lemma 3.27. Suppose that C is a comodule over A∗ which is concentrated in
even degrees. Then C is naturally a comodule over P∗.

Proof. Let x ∈C∗ be a homogenous element. Then

α(x) =
∑

i

x ′i ⊗ x ′′i ∈A∗⊗C .

Since x ′′i is in an even degree and since α is a degree preserving, it follows
that x ′i is necessarily in even degree. For the sake of concreteness, suppose
that p > 2. Suppose there were an element x ′i which is not in P∗. Then
the only way it could be in even degrees is if x ′i is of the form mτ where
m ∈ P∗ and τ ∈ E∗ is a product of an even number of distinct τi ’s. On
the other hand, by coassociativity we must have that∆(mτ) is entirely in
even degrees, but we see from the formulas for∆(τ) that this is impossible
if τ 6= 0. �

Theorem 3.28. We have the following.
(1) H ∗(BU ;Z)∼=Z[c1, c2, . . .] where |ci |= 2i .
(2) The Thom spectrum MU then has a Thom class u : MU→ HFp and

we have H∗(MU;Z)∼=Z[b1, b2, . . .] where |bi |= 2i .
(3) For any prime p, the image of the Thom class u in homology is P∗.

We will need the following theorem.

Proposition 3.29 (Milnor, Novikov, [10]). The mod p homology of MU is
given by P∗⊗N where N is a polynomial algebra on generators xi of degree
2i where i 6= p j − 1. Here P∗ is the even subalgebra of A∗.

Proof. As MU is a ring spectrum, the homology H∗MU is a comodule
algebra over A∗. By the previous theorem, it must then be that H∗MU
is a comodule algebra over P∗. The Thom class gives a surjective map of
comodule algebras

H∗MU→ P∗.
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We take

C = Fp �P∗
H∗MU= {x ∈H∗MU | α(x) = 1⊗ x}

By the Milnor-Moore theorem we have an isomorphism of P∗-comodules
H∗MU∼= P∗⊗C . Now, by construction, C has a trivial coaction and is a
subalgebra of H∗MU. To show that it has the desired form, one just counts
the dimensions of C in any given degree. �

Remark 3.30. Its interesting to read the original papers, especially Mil-
nor’s ([10]) which precedes the paper of Milnor-Moore [11]. In [10], Mil-
nor gives a very computational and explicit description of the action of A
on H ∗MU to show that C is a trivial comodule which is worth reading.

Plugging this into the Adams spectral gives

E s ,t
2
∼= ExtA∗

(Fp , H∗MU) =⇒ π∗MU.

We need to calculate the E2-term. To do that, we would like to use a
change-of-rings isomorphism. We have established that H∗MU∼= P∗⊗C ,
and so we have

H∗MU∼= P∗⊗C ∼= (A∗�E∗
Fp)⊗Fp

C ∼=A∗�E∗
C ,

where the last isomorphism follows because C is has trivial coaction. We
can use the change-of-rings isomorphism to write this as

ExtA∗
(Fp , H∗MU)∼= ExtE (Fp ,C )∼= ExtE (Fp ,Fp)⊗C .

Using the above exercise and the Künneth isomorphism shows that

ExtE (Fp)∼= P (v0, v1, . . .),

where |vi |= (1,2 p i−1). Note that the E2-term of this ASS is concentrated
in only even total degrees, and so there is no room for differentials. There
is also no room for any hidden extensions. This shows that

π∗M U∧
p
∼=Zp[v1, v2, . . .]⊗C .

This is just giving the local structure of π∗M U , but we want the integral
structure.

Definition 3.31. Let R be a connected graded ring with R the ideal of all
elements in positive degree. Then the module of indecomposables of R is
defined to be QR := R/R

2
. To indicate the part of QR in degree i , we

write Qi R.
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Note that Q2iπ∗M U⊗Z/p is justZ/p for each i > 0. Thus Q2iπ∗M U ∼=
Z for each i > 0. Pick an element xi ∈π2i MU which projects to a genera-
tor of Q2i R and define

L :=Z[x1, x2, . . .].
Then there is an obvious map L→π∗M U . By the previous computations
with the ASS, this map is an isomorphism after tensoring with Z(p), and
hence is an isomorphism globally.

Now let’s calculate the homotopy groups of k u using the Adams spec-
tral sequence.

Theorem 3.32 (Adams). The mod p homology of k u is given by put in citationput in citation

H∗k u ∼=A�E(Q0,Q1)∗ · {1,β, . . . ,βp−2}.

Plugging this into the Adams spectral sequence for any given prime p,
we find that

E∗∗2 = ExtA∗
(H∗k u)∼= ExtE(2)∗

(Fp ,Fp)⊗Fp{1,β, . . . ,βp−2}.

By a previous exercise we have put in hyper-
link to exercise
put in hyper-
link to exerciseExtE(2)∗

(Fp)∼= P (h0, v1),

where |v1|= (1,2 p − 1). Thus v1 is in stem 2(p − 1). So we have that the
Adams E2-term is

P (h0, v1)⊗Fp{1,β, . . . ,βp−2}.

Since all the classes are in even total degree, there is no room for differ-
entials. There also no additive extension problems. Similar to the case of
MU we have

π∗k u =
¨

Z ∗ ≡ 0 mod 2
0 ∗ ≡ 1 mod 2

Now, k u is actually a ring spectrum and as an algebra

H∗k u ∼=A�E(2)∗⊗Fp[β]/β
p−1.

Thus there is a hidden multiplicative extension

β ·βp−2 = v1

in the Adams spectral sequence.

Remark 3.33. There are various ways to figure out this hidden extension.
One way relies on BP, the Brown-Peterson spectrum, and some facts about
formal group laws. The theory k u is complex-orientable and carries the
multiplicative formal group law. This guarantees a map BP∗ → k u∗, and
calculations with formal group laws shows that v1 7→ βp−1. Really you
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probably want to start with MU→ k u and then go to BP so that we can
use the fact that MU is free.finish thisfinish this

3.3. The May spectral sequence. In this section I want to give an expla-
nation of a tool that was developed by Peter May to calculate that Adamsput citationput citation
E2-term. However, the approach I take follows [15]; May’s original ap-
proach is actually general enough to give a spectral sequence for comput-
ing the cohomology of the universal enveloping algebra of a restricted Lie
algebra.

We will obtain the May spectral sequence by putting a filtration on the
dual Steenrod algebra, this will induce a filtration on the cobar complex for
A∗, which then yields a spectral sequence. For concreteness, I will fix p to
be 2, and then indicate the necessary changes to get the spectral sequence
at odd primes.

Definition 3.34. We define a function, referred to as May weight, on mono-
mials of A∗ as follows: we set wt(ξ 2 j

i ) = 2i − 1 and we extend it to general
monomials by taking the dyadic expansion in the powers and then extend-
ing multiplicatively. So, for example, we consider ξ 7

1 and rewrite it as

ξ 7
1 = ξ

1+2+4
1 = ξ 1

1 ξ
2

1 ξ
4

1 ,

then the May weight of ξ 7
1 is

wt(ξ 7
1 ) =wt(ξ 1

1 ξ
2

1 ξ
4

1 ) =wt(ξ1)+wt(ξ 2
1 )+wt(ξ 4

1 ) = 1+ 1+ 1= 3.

Exercise 18. Calculate the May weight of the following monomials: ξ 5
1 ξ

2
3 ,ξ 3

7 ξ10,
and however many more until you feel like you get it.

We have now defined the May weight for arbitrary monomials in A∗.
We can use this to define a filtration of A∗.

Definition 3.35. Define an increasing filtration F•A∗ on A∗ by setting Fi A∗
to be the subspace of A∗ spanned by all monomials of May weight ≤ i .

Exercise 19. Show that this is a multiplicative filtration on A∗.

It is important to note that the coproduct does not increase the May
weight. In fact, we can see what happens by explicit computation. The
coproduct on ξn is given by

ψ(ξn) =
∑

i+ j=n

ξ 2 j

i ⊗ ξ j .

Because we are working over F2, we obtain

ψ(ξ 2k

n ) =
∑

i+ j=n

ξ 2 j+k

i ⊗ ξ 2k

j .
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Now wt(ξ 2k

n ) = 2n− 1. On the other hand, any term in the sum has May
weight given by

wt(ξ 2 j+k

i ⊗ ξ 2k

j ) = 2i − 1+ 2 j − 1= 2n− 2.

So the coproduct actually decreases the May weight. In particular, this
means that the associated graded E0

∗A∗ inherits the structure of a (bigraded)
Hopf algebra. In fact, E0

∗A∗ is an especially nice Hopf algebra.

Proposition 3.36. The Hopf algebra E0
∗A∗ is an exterior Hopf algebra on

primitive generators ξi , j , where ξi , j is represented by ξ 2 j

i .

Proof. It is clear that E0
∗A∗ is generated as an algebra by the elements ξi , j .

Observe that ξi , j ∈ E0
2i−1A2 j−1. To check that these are exterior elements,

note that, by definition of the associated graded, that

ξ 2
i , j ∈ E0

4i−2A2 j+1−2.

However, ξ 2
i , j is represented by ξ 2 j+1

i , which is in filtration 2i − 1. Thus
ξ 2

i , j = 0.
It remains to compute the coproduct on ξi , j . Note that the coproduct

on ξ 2 j

i is

ξ 2 j

i ⊗ 1+
i−1
∑

n=1

ξ 2i−n+ j

n ⊗ ξ 2 j

n−i + 1⊗ ξ 2 j

i .

As we noticed before, all of the terms in the middle actually have May
weight 2i − 2, and are thus 0 in the associated graded. This shows that

ψ(ξi , j ) = ξi , j ⊗ 1+ 1⊗ ξi , j .

�

This filtration of A∗ induces a filtration on the cobar complex of F2.
This is defined in the following way

FkC s
A∗
(F2) :=

∑

i1+···+is≤k

Fi1
A∗⊗ · · ·⊗ Fis

A∗

Exercise 20. Show that with the natural filtration on A∗⊗A∗, we have a
bigraded isomorphism

E0
∗ (A∗⊗A∗)∼= E0

∗A∗⊗ E0
∗A∗.

By induction we thus have

E0
∗ (A

⊗s
∗ )∼= E0

∗ (A∗)
⊗s .
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Since we have a filtration on the cobar complex C •A∗(F2) we get an asso-
ciated spectral sequence

E1 =H ∗(E0C •A∗(F2)) =⇒ H ∗(C •A∗(F2)).

But in fact we have

E0
∗C
•
A∗
(F2)∼=C •E0A∗

(F2)

which means we can rewrite this spectral sequence using slightly more fa-
miliar terms.

ExtE0A∗
(F2,F2) =⇒ ExtA∗

(F2,F2).

Since C •A∗(F2) is a cochain complex in graded objects, we have that C •E0A∗
(F2)

is a cochain complex in bigraded objects. Thus the E1-term is a trigraded ob-
ject.

Now when one writes down a spectral sequence, one should take care
to carefully track the indices. The E1-term for the May spectral sequence
is usually indexed as

E s ,t ,m
1 = Exts ,m,t

E0A∗
(F2,F2),

where s denotes the cohomological degree and (t , m) denotes the the inter-
nal bidegree. This means that a ∈ Exts ,t ,m

E0A∗
(F2,F2) is represented by a cocy-

cle α ∈ C s
E0A∗
(F2) of bidegree (t , m). We refer to m as the May filtration

and t as the topological degree.

Exercise 21. Show that the term E s ,t ,m
1 contributes to Exts ,t

A∗
(F2,F2).

Thus, people will typically write this spectral sequence as

E s ,t ,m
1 = Exts ,t ,m

E0A∗
(F2,F2) =⇒ Exts ,t

A∗
(F2,F2).

In light of Proposition 3.36, we can write the E1-term as

Ext∗∗∗E0A∗
(F2,F2)∼= P (hi , j | i ≥ 1, j ≥ 0)

with hi , j in tri-degree (1,2 j (2i − 1), 2i − 1).
Next, let’s figure out the direction of the differentials. Recall that a

dr -differential is going to be changing the filtration degree by r . In this
case, we obtained our spectral sequence from an increasing filtration, so
that means that the differential is supposed to lower the filtration. Thus,
the differentials are supposed have the tri-digree

dr : E s ,t ,m
r → E s+1,t ,m−r

r .
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We should also determine, at least, the d1-differential. Recall we have

ψ(ξ 2 j

i ) = ξ
2 j

i ⊗ 1+
i−1
∑

k=1

ξ 2k+ j

i−k ⊗ ξ
2 j

k + 1⊗ ξ 2 j

i

and recall that we noticed that the terms in them middle have May filtra-
tion 2i−2. In particular, they are exactly one lower in May filtration. This
shows that

d1(hi , j ) =
i−1
∑

k=1

hi−k ,k+ j hk , j .

We have thus shown

Theorem 3.37. There is a convergent multiplicative spectral sequence of the
form

E s ,t ,m
1 =⇒ Exts ,t

A∗
(F2,F2)

with
• E1

∼= P (hi , j | i ≥ 1, j ≥ 0) with |hi , j |= (1,2 j (2i − 1), 2i − 1) and
• dr : E s ,t ,m

r → E s+1,t ,m−r
r .

• The d1-differential is determined by the formula d1(hi , j ) =
∑i−1

k=1 hi−k ,k+ j hk , j .

Proof. The only thing we didn’t prove in the above discussion is that the
spectral sequence is multiplicative. This follows from the standard fact
that a multiplicative filtration on a DGA results in a multiplicative spectral
sequence. �

Remark 3.38. It is common for people to abbreviate h1, j as h j . These are
the only elements on the s = 1 line which survive to the E∞-term of the
MSS, and so are the only elements on the 1-line of the Adams E2-term.
These elements are called the Hopf invariant classes because if they survive
the Adams spectral sequence, then that gives the existence of a Hopf in-
variant 1 element in that stem.

Remark 3.39. Since E s ,t ,m
∞ contributes to Exts ,t

A∗
, we typically surpress m

from the notation and draw the May spectral sequence in Adams coordi-
nates (t − s , s). Under this convention, May differentials look like Adams
d1-differentials.

Remark 3.40. We can clearly define analogous filtrations for the quotient
Hopf algebras A(n)∗. This results in a May spectral sequence for each
A(n)∗.

Exercise 22. Defining the analogous filtrations on A(n)∗ show that the
E1-page is a again a polynomial algebra on some hi , j . For which i , j is hi , j

in the E1-page for the May SS for A(n)∗?
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So let’s see how the May spectral sequence works for A(1)∗. Recall that
H ∗(ko) =A�A(1), thus the Adams spectral sequence for ko takes the form

E s ,t
2 = Exts ,t

A(1)∗
(F2) =⇒ π∗ko∧2 .

Thus the May SS for A(1)∗ calculates the Adams E2-term for ko. Arguing
analogously as above, we find that the May E1-term for A(1)∗ is

E∗∗∗1 = P (h0, h1, h2,0),

and the d1-differential is given by

d1(h2,0) = h0h1.

This shows that the E2-term of the spectral sequence is given by

P (h0, h1, b20)/(h0h1)

where b20 := h2
20. Observe that the tri-degree of b20 is (2,6,6). We will

show that there is only one further May differential. Now, b20 survives to
the E2-term because d1 satisfies the Leibniz rule. So in particular,

d1(h
2
20) = d1(h20h20) = h0h1h20+ h20h0h1 = 0.

However, the only reason this is 0 on the E1-term of the MSS is because
the elements of the E1-term commute with each other.

Let’s examine this a bit more closely. In C •E0A(1)∗
(F2), the element b20

is represented by x = [ξ20 | ξ20]. This naturally lifts to C •E0A(1)∗
(F2) via

ex = [ξ2 | ξ2]. We can calculate the cobar differential on ex, it is

d (ξ2 | ξ2) = ξ
2

1 | ξ1 | ξ2+ ξ2 | ξ
2

1 | ξ1.

This corresponds on the May E1-page to

h1h0h20+ h20h1h0.

Of course this element is 0 since the E1-page is commutative, so it looks like
b20 might not support a May differential. But wait! We should remember
why the elements h1, h0, h20 commute with each other.

Remember that E1 =H ∗(C •E0A(1)∗
(F2)). In this case, we have that E0A(1)∗

is a primitively generated exterior Hopf algebra

E0A(1)∗ = E(ξ1,0,ξ1,1,ξ2,0).

Let us analyze this is in slightly greater generality.

Example 3.41. Let E = E(x, y) be a primitively generated exterior Hopf
algebra. Then we know ExtE (F2) is a polynomial generator on classes hx
and hy which are represented in the cobar complex by [x] and [y] respec-
tively. The classes hx hy and hy hx are represented by [x | y] and [y | x]
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respectively. In order to show that these elements represent the same class
in cohomology , we need to see that

x | y + y | x
is a coboundary in the cobar complex. Observe that

ψ(xy) =ψ(x)ψ(y) = (x⊗1+1⊗x)·(y⊗1+1⊗y) = xy⊗1+x⊗y+y⊗x+1⊗xy.

This shows that in the cobar compelx

d ([xy]) = [x | y]+ [y | x].

This suggests how we might find differentials in the May spectral se-
quence! The only reason it looks like the elements h0, h1, h20 look like they
commute on the level of the May E1-term is because we ignored terms of
lower May filtration when computing the diagonals of elements in E0A(1)∗.
Thus we should remember why h0, h1, h20 commute in C •E0A(1)∗

(F2) and then
lift to C •A(1)∗(F2) and then compute the cobar differential. The residual stuff
will lead to a May differential.

So let’s see how this works out in this case. As we saw above, we have

d (ξ2 | ξ2) = ξ
2

1 | ξ1 | ξ2+ ξ2 | ξ
2

1 | ξ1.

We would like to commute h20 past h0 and then past h1. In C •E0A(1)∗
(F2)

we have the corresponding element

ξ1,1 | ξ1,0 | ξ2,0+ ξ2,0 | ξ1,1 | ξ1,0.

From the previous example, we see that we have in C •E0A(1)∗
(F2)

d (ξ1,1 | ξ1,0ξ2,0) = ξ1,1 | ξ1,0 | ξ2,0+ ξ1,1 | ξ2,0 | ξ1,0

and
d (ξ1,1ξ2,0 | ξ1,0) = ξ1,1 | ξ2,0 | ξ1,0+ ξ2,0 | ξ1,1 | ξ1,0.

Thus we see that

d (ξ1,1 | ξ1,0ξ2,0+ ξ1,1ξ2,0 | ξ1,0) = ξ1,1 | ξ1,0 | ξ2,0+ ξ2,0 | ξ1,1 | ξ1,0.

This is the reason h1h0h2,0 = h20h1h0 in C •E0A(1)∗
(F2).

To get a May differential we lift this to C •A(1)∗(F2). Thus we want to add
the elements ξ 2

1 | ξ1ξ2 and ξ 2
1 ξ2 | ξ1 to ξ2 | ξ2. We need to calculate these

the cobar differential on these elements. Note that

ψ(ξ1ξ2) = (ξ1 | 1+ 1 | ξ1)(ξ2 | 1+ ξ
2

1 | ξ1+ 1 | ξ2).

Calculating this out shows that

d (ξ1ξ2) = ξ
3

1 | ξ1+ ξ1 | ξ2+ ξ2 | ξ1+ ξ
2

1 | ξ
2

1 .
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An analogous calculation shows that

d (ξ 2
1 ξ2) = ξ

2
1 | ξ2+ ξ2 | ξ

2
1 + ξ

2
1 | ξ

3
1 .

Remark 3.42. In C •A∗(F2) one would get

d (ξ 2
1 ξ2) = ξ

4
1 | ξ1+ ξ

2
1 | ξ2+ ξ2 | ξ

2
1 + ξ

2
1 | ξ

3
1 .

But in A(1)∗, ξ
4

1 = 0, so the first term does not appear.

Thus, we find that

d (ξ 2
1 | ξ1ξ2) = ξ

2
1 | ξ

3
1 | ξ1+ ξ

2
1 | ξ1 | ξ2+ ξ

2
1 | ξ2 | ξ1+ ξ

2
1 | ξ

2
1 | ξ

2
1

and
d (ξ 2

1 ξ2 | ξ1) = ξ
2

1 | ξ2 | ξ1+ ξ2 | ξ
2

1 | ξ1+ ξ
2

1 | ξ
3

1 | ξ1.
Combining all of this together, we get that

d (ξ2 | ξ2+ ξ
2

1 | ξ1ξ2+ ξ
2

1 ξ2 | ξ1) = ξ
2

1 | ξ
2

1 | ξ
2

1 .

Now note that the May filtration of ξ2 | ξ2 is 6, where as the May filtration
of ξ 2

1 ξ2 | ξ1 and ξ 2
1 | ξ1ξ2 are both 4. Thus ξ2 | ξ2 and ξ2 | ξ2+ ξ

2
1 | ξ1ξ2+

ξ 2
1 ξ2 | ξ1 give the same element in C •E0A(1)∗

(F2). Since the May filtration of
ξ 2

1 | ξ 2
1 | ξ 2

1 is 3, this shows the following proposition.

Proposition 3.43. In the May spectral sequence for A(1)∗, there is a d3-differential

d3(b20) = h3
1 .

Remark 3.44. Observe that in A∗, the element ξ 4
1 is non-zero. So we

would obtain the following differential in the May SS for A∗, d3(b20) =
h3

1 + h2
0 h2.

This shows the following.

Proposition 3.45. The E4-page of the May SS for A(1)∗ is

P (h0, h1,α,β)/(h0h1,α
2− h2

0β, h1α)

where α is represented by h0b20 and β is represented by b 2
20. Moreover, there

are no higher May differentials and so this is also the E∞-page.

Recall that H ∗(ko) =A�A(1), and so the E2-page of the Adams spectral
sequence for ko is given by

ExtA(1)∗
(F2) =⇒ π∗(ko)⊗Z2.

So the previous proposition gives us the E2-term for the ASS for ko. Its
easy to see from the chart that there are no possible Adams differentials.
So the Adams spectral sequence collapses immediately.
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I want to point out a couple of things. Note that there is the quotient
map A∗→A(1)∗ and hence a morphism of cochain complexes

C •A∗(F2)→C •A(1)∗(F2)

Observe that this morphism is compatible with the May filtration on both
sides, and hence we get a morphism of May spectral sequences. The mor-
phism induces the obvious quotient map on E1-pages

P (hi , j | i ≥ 1, j > 0)→ P (h0, h1, h20).

Since the quotient map A∗→A(1)∗ is an isomoprhism in degrees t ≤ 3, we
see that the map on E1-pages above is an isomorphism in t − s ≤ 2. For A∗
there was the differential d3(b20) = h3

1 + h2
0 h2, so since h2 projects to 0 this

shows the map is an epimorphism on the E2-page in t − s = 3. Thus the
map

ExtA∗
(F2)→ ExtA(1)∗

(F2)
is an isomorphism for t − s ≤ 2 and an epimorphism in t − s = 3.

3.4. Adams Vanishing and Periodicity. In this section I want to sketch
the argument of the Adams vanishing line of ExtA(Fp ,Fp) and also say
something about the periodicity operators. I am also very lazy, so I won’t
consider all primes. Rather, I will focus on the case p = 2. The material
of this subsection can be found in [15], but was originally done by Adams
in [3]. The odd primary version was originally done by Liulevicius in [9],
but the techniques of [3] carry over.

Theorem 3.46. [3] The groups Exts ,t
A (F2,F2) are zero provided that 0< t −

s < f (s) where f (s) = 2s − ε where

ε=







1 s ≡ 0,1 mod 4
2 s ≡ 2 mod 4
3 s ≡ 3 mod 4.

Remark 3.47. I have expressed the numerical function f (s) following Ravenel.
Adams originally wrote this theorem with s > 0 and t < U (s) for a nu-
merical function U (s). We can go between the two statements via f (s) =
U (s)− s .

The idea behind Adams’ proof is to first consider the cofibre sequence

(3.48) S0→HZ→H .

This gives a long exact sequence in (co)homology, but it actually turns out
to be a short exact sequence. This gives a long sequence in Ext.

· · · → Exts ,t
A (F2)→ Exts ,t

A (A�A(0)∗)→ Exts ,t
A (H∗H )→ Exts+1,t

A (F2)→ ·· ·
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However, by a change-of-rings argument, we find that

ExtA(A�A(0)∗)∼= ExtA(0)∗
(F2)∼= F2[v0]

is all concentrated in t − s = 0. Moreover, the map

Exts ,t
A (F2)→ Exts ,t

A(0)∗
(F2)

is an isomorphism when t − s = 0. This tells us that when t − s > 0, then

Exts ,t
A (F2)∼= Exts−1,t

A (H∗H ).

So it suffices to prove a vanishing line for H∗H . Note that the cofibre
sequence (3.48) gives a short exact sequence in homology

0→ F2→A�A(0)∗→A�A(0)∗→ 0

We will let L stand for an A∗-comodule which is A(0)∗-free and con-
nected. Define a numerical function

T (4k + i) :=



















12k i = 0
12k + 2 i = 1
12k + 4 i = 2
12k + 7 i = 3

Theorem 3.49 (Adams’ Vanishing theorem, [3]). Exts ,t
A(r )∗
(L) = 0 for t <

T (s).

We will prove this in a series of lemmas. In the following we shall want
to consider 1≤ r ≤∞, and we should understand A(∞) to be the Steen-
rod algebra A.

Lemma 3.50. The Vanishing Theorem is true when r =∞ and L = A(0)∗
and for s ≤ 4.

Proof. This lemma is computational and has been left as an exercise. The
key ingredient is to use the fact that A(0)∗ =H∗S/2 and that in the derived
category DA∗

there is a cofibre sequence

F2[−1] F2 A(0)∗
·h0

Alternatively, one can write down a minimal resolution up through coho-
mological degree 4. �

Lemma 3.51. The Vanishing theorem is true when r =∞ and s ≤ 4 for any
A(0)-free L.
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Proof. As L is A(0)-free, it has a basis as an A(0)-module. This induces a
filtration on L by the degree of the basis generators. That is, we set FnL
to be the sub-A(0)-module of L spanned by generators in degree ≥ n2. We
will first prove that the statement holds for the quotients L/FnL for all n.
We do this by induction. We will then give a comparison to L itself.

The induction begins with L/F0L, but since F0L= L, we have that this
quotient is 0, in which case the statement is vacuous. The filtration induces
short exact sequences

0→ Fn L/Fn+1L→ L/Fn+1L→ L/FnL→ 0

and note that Fn L/Fn+1L is a free A(0)-module with generators all in the
same degree. This short exact sequence induces a long exact sequence in
Ext, This is a bit

confusing.
Adams is work-
ing in modules,
but I was origi-
nally in comod-
ules and now
we are in mod-
ules...I guess
I dualized at
some point...

This is a bit
confusing.
Adams is work-
ing in modules,
but I was origi-
nally in comod-
ules and now
we are in mod-
ules...I guess
I dualized at
some point...

· · · → Exts ,t
A (L/Fn L)→ Exts ,t

A (L/Fn+1L)→ Exts ,t
A (Fn L/Fn+1L)→ ·· · .

By the previous lemma, the right hand Ext-group satisfies the vanishing
theorem, and by induction it is true for the left hand Ext-group. Thus for
t < T (s), we have that the middle Ext-group is 0. Thus, we have shown
that the statement holds for all of the quotients L/FnL.

On the other hand, we have

Exts ,t
A (L)

∼= Exts ,t
A (L/FnL)

for n� 0. This proves the lemma. �

At this point, we need to introduce Margolis homology.
Suppose that L is a module over A. Then, in particular, L is a module

over A(0) = E(Sq1). Since Sq1 squares to 0, we can regard it as defining a
differential on L.

Definition 3.52. The Sq1-Margolis homology of L is

M∗(L; Sq1) :=
kerSq1

imSq1 .

The following is fairly straightforward to see.

Proposition 3.53. An A(0)-module L is free if and only if M∗(L; Sq1) = 0.

Lemma 3.54. Let
0→ L′→ L→ L′′→ 0

be a short exact sequence of A(0)-modules. Then if two of three of them are
A(0)-free, then so is the third.

2We take this convention since, when we think of L as an A(0)-module, acting by Sq1

increases the degree.
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Proof. This follows immediately from the LES in Margolis homology. �

Proposition 3.55. The Vanishing Theorem holds in the case r =∞.

Proof. Let L be an A-module which is free over A(0) and connected. Form
the first four terms in a minimal A-free resolution of L, so

P4 P3 P2 P1 P0 L.
d4 d3 d2 d1 ε

As A is itself A(0)-free, it follows from the previous lemma that the images
of the di are A(0)-free for all i . Let M denote the image of d4. Then by
Lemma 3.51, we have that Mt = 0 for t < 12.

We will now induct on k. That is, we will show by induction on k that
for any j ≤ k, and t < T (4 j + i), i = 0,1,2,3, one has Exts ,t

A (L) = 0 for
any A(0)-free A-module L. By Lemma 3.51, the case k = 0 holds for any
such L. Suppose that the statement holds for some k. We may then apply
the inductive hypothesis to M . Since we have an isomorphism

Exts+4,t
A (L)∼= Exts ,t

A (M )

we can conclude that the result is true for L whenever t < T (4 j + i), but
now we may allow for j = k + 1. This completes the induction. �

In order to deduce the Vanishing Theorem, we need to allow r to be
any natural number. Observe that it is trivial in the case r = 0. So assume
that 0< r <∞. The idea is to use the change of rings isomorphism

Exts ,t
A (A⊗A(r ) L)∼= Exts ,t

A(r )(L)

This allows us to try and use the already known case of the Vanishing
Theorem (when r =∞) to the module A⊗A(r ) L. In order to do this, we
need to know that A⊗A(r ) L is still free as an A(0)-module. It turns out to
be easier to show that A(ρ)⊗A(r ) L is free as an A(0)module for any ρ≥ r .
Since L is free as an A(0)-module, it is sufficient to prove that A(ρ)⊗A(r )A(0)
is free as an A(0)-module.

Lemma 3.56. The module A(ρ)⊗A(r )A(0) is free as an A(0)-module.

Proof.Not sure if this
actually works,
but it was an
interesting idea,
so I wrote it up
to double check
later.

Not sure if this
actually works,
but it was an
interesting idea,
so I wrote it up
to double check
later.

Regard everything in sight as a cochain complex via multiplication by
Sq1. Then we can regard the tensor product above as a tensor product in
cochain complexes (Is that part right?). We then get a Tor-spectral sequence

T o r M∗(A(r );Sq1)(M∗(A(ρ); Sq1), M∗(A(0); Sq1)) =⇒ M∗(A(ρ)⊗A(r )A(0); Sq1).

The input is clearly 0, and so the answer is 0. This shows that the module
is free as an A(0)-module. �
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From this the Vanishing Theorem follows. From the Vanishing Theo-
rem, we can prove a (slightly) weaker version of Adams’ vanishing line.

Definition 3.57. Let V (s) be the numerical function defined by

V (4k + i) =



















12k − 3 i = 0
12k + 2 i = 1
12k + 4 i = 2
12k + 6 i = 3

Theorem 3.58 (Vanishing Theorem Lite). We have that Exts ,t
A (F2) = 0 pro-

vided that 0< s < t <V (s).

Proof. As we saw above, we have an isomorphism

Exts ,t
A (F2)∼= Exts−1,t

A (A�A(0)∗)

Since A�A(0) is A(0)-free we can apply the Vanishing Theorem to this
module. Thus we can conclude that

Exts−1,t
A (A�A(0)∗) = 0

so long as
0< s − 1< t < T (s − 1)+ 2.

The extra 2 arises because the connectivity of A�A(0) is 2, and so the Van-
ishing Theorem actually applies toΣ−2A�A(0). Observe that T (s−1)+2=
V (s). �

Remark 3.59. This is only a slightly weaker version of the the desired
vanishing line result. The way to see this is to let g (s) :=V (s)− s . Then
we have that g (s) = 2s −η(s) where

η(s) =







3 s ≡ 0,3 mod 4
1 s ≡ 1 mod 4
2 s ≡ 2 mod 4

In order to get a more optimal result, Adams has to do quite a bit of extra
work to obtain his periodicity theorem.

3.5. Other computational techniques. I want to briefly sketch other
techniques one can use to do calculations in the May spectral sequence.
These rely on additional structure on ExtA. This is in fact, quite general,
and we give the following theorem of May (cite May’s “general algebraic
approach...”).
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Theorem 3.60. Let Γ be a Hopf algebra overZ/2 and let N be a left Γ -comodule
algebra. Then ExtΓ (F2,N ) carries algebraic Steenrod operations

Sqn : Exts ,t
Γ (N )→ Exts+n,2t

Γ (Fp)

which satisfies the following for x ∈ Exts ,t ,
(1) Sqi (x) = 0 if i > s ,
(2) Sqi (x) = x2,
(3) Cartan formula
(4) Adem relations

May showed the following in his thesis.

Proposition 3.61. Let x ∈ Exts ,t
Γ (N ) be represented in the cobar complex by

a sum of elements of the form γ1 | . . . | γs n. Then Sq0(x) is represented by a
similar sum of the form γ 2

1 | . . . | γ 2
s n2.

The up shot of this is that in the case of the dual Steenrod algebra, we
have

Sq0(hi , j ) = hi , j+1.

Nakaura showed that there is an intricate relationship between the Squar-
ing operations and the cobar differential. First, keep in mind that in order
to get the algebraic Steenrod operations, one first defines operations

Sqi : C •(A∗)→C •(A∗)

by
Sqi (x) = x ∪i x +δ(x)∪i+1 x

in the usual way.

Theorem 3.62 (Nakamura). Sqi+1δ = δSqi for i ≥ 0.

This translates into differentials in the May spectral sequence. In gen-
eral, what one has is formulas of the following type,

d?(Sqn x) = Sqndr x.

So if you can find a differential on some element x, then one can obtain
further differentials in the May spectral sequence using squaring opera-
tions. Let’s see this in an example.

Example 3.63. We have the May d1-differential d1(h20) = h1h0. Then, via
Nakamura’s theorem, we have

d?(b20) = d?(Sq1h20) = Sq1d1(h20) = Sq1(h1h0),

by the Cartan formula we find that

Sq1(h1h0) = Sq1(h1)Sq0h0+ Sq0(h1)Sq1(h0) = h2
1 h1+ h2h2

0 = h3
1 + h2

0 h2,
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which is what we found explicitly before. Note that by comparison of
May weights we can figure out that ?= 3. Applying Sq0 over and over, we
also find

d3(b2, j ) = h3
j+1+ h2

j h j+2.

Let’s do another example.

Example 3.64. We have that d3(b
2
20) = 0. Thus we should try to use Naka-

mura’s theorem. We have

d?(b
2
20) = d?(Sq2(b20)) = Sq2d3(b20) = Sq2(h3

1 + h2
0 h2).

Using the Cartan formula, one can check that

Sq2(h3
1 ) = 0

and
Sq2(h2

0 h2) = h4
0 h3.

Thus we have d7(b
2
20) = h4

0 h3.
Again, iteratively using Sq0, we find that d7(b

2
2, j ) = h4

j h j+3.

In general, one will find that

d2i+1−1(b
2i

20) = h2i+1

0 hi+2.

for i ≥ 1.

Example 3.65.

3.6. An Adams differential. I now want to sketch an argument given by
Adams in [1], and use it to derive an Adams differential on h4. First, I need
to recall some important relations in the Adams E2-term for the sphere.

Theorem 3.66. For p = 2, we have
(1) (Adams [2]) Ext2 is spanned by the hi h j where 0≤ i ≤ j and j 6= i+1,
(2) (Wang) Ext3 is spanned by hi h j hk subject to the relations

• hi hi+1hk = 0,
• h2

i hi+2 = h3
i+1,

• hi (hi+2)
2 = 0

along with the elements

ci = 〈hi+1, hi , h2
i+2〉 ∈ Ext3,11·2i

.

We will deduce from this the following.

Theorem 3.67 (Adams [1]). Ifπ2n−1Sn andπ4n−1S2n both contain elements
of Hopf invariant one, then n ≤ 4.
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Recall that the hi are exactly the elements in the Adams E2-term which
could detect elements of Hopf invariant 1. Thus, what needs to be shown
is that it is not possible for hm and hm+1 to both be permanent cycles of
the Adams spectral sequence unless m < 4.

To prove the theorem, suppose towards a contradiction that hm and
hm+1 and m ≥ 3. Consider the element h0h2

m ∈ Ext3,2m+1+1
A (F2). Then

by the above theorem, this element is non-zero, and it is a d2-cycle as it
is a product of d2-cycles. It is also not a boundary under d2. Indeed,
since the 1-line is spanned by the hi , the d2-boundaries in the 2-line are
spanned by d2(hi ). Note that since hi ∈ Ext1,2i

, the boundary d2(hi ) is in
Ext3,2i+1. In particular, it could be the case that d2(hm+1) = h0h2

m, since the
bidegrees work out correctly. However, this doesn’t happen since we as-
sumed that hm and hm+1 are permanent cycles. Thus hm+1 doesn’t support
a d2-differential. But if h0h2

m were going to die in the spectral sequence,
then it would have to be killed by a d2-differential, and as this differential
doesn’t occur, it follows that it is not killed in the spectral sequence. As hm
is also a permanent cycle, h0h2

m doesn’t support a differential. Thus h0h2
m

is a non-zero element in E3,2m+1+1
∞ . Let h ′i denote the class in π2i−1S0 which

is detected by hi . Then as h ′m lives in odd stem, we have 2(h ′m)
2 = 0. But

this implies that h0h2
m = 0 in E∞. This is a contradiction. This proves the

theorem.
The argument above gives us the following corollary.

Corollary 3.68. We have the Adams d2-differential d2(h4) = h0h2
3 .

4. COMPLEX-ORIENTED COHOMOLOGY THEORIES, QUILLEN’S
THEOREM, AND BROWN-PETERSON THEORY

4.1. Complex-oriented Cohomology Theories. Throughout let E be a
ring spectrum.

Definition 4.1. A complex orientation of E is an element x ∈ eE∗(CP∞)
such that under the restriction map

eE∗(CP∞) eE∗(CP 1) = eE∗(S2)i∗

the class x is mapped to a generator. Here, we regard eE∗(CP 1) as a free
rank 1 module over π∗E .

Remark 4.2. In light of the suspension isomorphism

eE∗(S0)∼= eE∗+2(S2)
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we have a canonical generator xcan of eE∗(S2) corresponding to 1. Thus,
a complex orientation x has the property that i ∗x = u xcan for some unit
u ∈ E×∗ . In general, one has to keep track of this u in formulas. This is
one of the reasons people use the more rigid definition that i∗x = xcan,
i.e. u = 1. This way, one does not have to keep track of u’s in various
formulas.

Example 4.3. The Eilenberg-MacLane spectrum H R is complex oriented
for any ring R, since H R.

Example 4.4. If E = KU , then π∗KU ∼= Z[β±] where |β| = 2. Recall
that the isomorphism π2KU → eK0(S2) sendsβ to the class 1−L where L
is the Hopf bundle over CP 1, i.e. the tautological bundle over CP 1. Thus
a complex orientation for KU is the class x = β−1(1− γ ) ∈ eK2(CP∞),
where γ is the tautological bundle.

Example 4.5. Let M U be the complex cobordism spectrum. Then

M U (1) = (CP∞)γ .

I claim that this Thom space is equivalent toCP∞. Indeed, let E(γ ) denote
the total space of γ . This bundle can be given a metric, so we can consider
the corresponding disc bundle D(γ ) and S1-bundle S(γ ). Note that S(γ ) is
a principal U (1)-bundle, in fact it is the universal U (1)-bundle. Thus S(γ )
is contractible. The Thom space, in this case, is then

(CP∞)γ =D(γ )/S(γ ).

As S(γ ) is contractible, the quotient map

E(γ )→ (CP∞)γ

is an equivalence, and hence the zero section

ζ :CP∞→ E(γ )→ (CP∞)γ

is an equivalence. A complex orientation for M U is then class given by
the map

Σ−2CP∞ Σ−2M U (1)→M U .ζ

To see that this restricts to a generator, note that the map

Σ2M U (0)→M U (1)

used in defining M U is the inclusion of CP 1 into CP∞.

Recall that the Atiyah-Hirzebruch spectral sequence is a method to cal-
culate E∗X from the singular cohomology of X ,

E p,q
2 =H p(X ;πq E) =⇒ E p+qX .
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This is a multiplicative spectral sequence and the differentials are linear
over E∗. There are also reduced versions and homological versions. See
Kochman for a thorough construction.

We use the AHSS to calculate E∗(CP∞) and related groups.

Proposition 4.6. We have the following:
(1) E∗CP n ∼= E∗[x]/(xn+1) where x is the restriction of the complex ori-

entation to CP n ,
(2) E∗CP∞ ∼= E∗[[x]] where x is the complex orientation,
(3) E∗(CP n ×CP m)∼= E∗[x1, x2]/(x

n+1
1 , x m+1

2 ), and
(4) E∗(CP∞×CP∞)∼= E∗[[x1, x2]].

Proof. We utilize the Atiyah-Hirzebruch spectral sequence. Consider

E2 =H ∗(CP n; E∗) =⇒ E∗(CP n).

Now since H ∗(CP n) is a free abelian group, we have that the

E2
∼=H ∗(CP n)⊗ E∗ ∼= E∗[c1]/(c

n+1
1 ).

Now the class x ∈ E∗CP n corresponding to the complex orientation is
detected by an element t in the E2-term. Note further that the AHSS is
natural in X . Thus, the map CP 1→CP n induces a morphism of Atiyah-
Hirzebruch spectral sequences. Clearly, the AHSS for CP 1 collapses at
E2. The assumptions on the complex orientation x implies that i ∗x is a
generator of π2E . This is reflected in the E2-page of the AHSS by saying
that on the AHSS E2-term, i ∗ t is a generator of the E2-term for eE∗(CP 1).
This implies that i ∗ t is the class c1 up to a unit in π∗E . This implies that
the class c1 does not support a differential. So as the spectral sequence is
multiplicative and linear over E∗, it follows that it collapses at E2.

Now it could be the case that xn+1 is not zero, but rather some poly-
nomial of degree at most n. To exclude this possibility, note that x ∈
eE∗(CP n) = E(CP n,∗). Let Ui be the affine open consisting of points
[x1, . . . , xi−1, 1, . . . , xn+1]. As Ui is contractible, it follows that x ∈ E∗(CP n, Ui )
for each i . Thus

xn+1 ∈ E∗(CP n, U1 ∪ · · · ∪Un+1) = E∗(CP n,CP n) = 0.

Hence xn+1 = 0. This shows that E∗(CP n) = E∗[x]/(xn+1).
We obtain the second statement by using the Milnor exact sequence

0→
1

lim E∗(CP n)→ E∗(CP∞)→ lim E∗(CP n)→ 0.

It is clear via the Atiyah-Hirzebruch spectral sequence that the maps

E∗(CP n+1)→ E∗(CP n)
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is the obvious projection. So the Mittag-Leffler condition holds and hence
lim1 vanishes. The last two statements are proved analogously. �

One can also use the Atiyah-Hirzebruch spectral sequence to prove the
following.

Proposition 4.7. If ξ is a complex bundle over X , then eE∗(P(ξ )) is a free
E∗(X ) module on the generators 1, x, . . . , xn coming from the cohomology of
the fibre CP n .

Proof. This is from the generalized version of the Leray-Hirsch theorem.
See Switzer 15.47 for details. �

Once you have this, you can define chern classes ci for the cohomology
theory E . Indeed, the chern classes for ξ can be defined to be the elements
ci (ξ ) ∈ E2i (X ) such that

xn+1 = (−1)n+1cn(ξ ) · 1+(−1)ncn−1(ξ )x + · · ·+ c1(ξ ) · x
n−1.

Note that for the above to work we need to have x ∈ E2(CP∞). For more
details see Switzer 16.2. In particular, we can think of x as the first Chern
class of the tautological bundle.

Now the space CP∞ classifies complex line bundles. That is a complex
line bundle on a space X (up to isomorphism) is the same as a homotopy
class of maps

X →CP∞.
Now if L1 and L2 are two line bundles, we can tensor them together to
obtain a new line bundle L1⊗L2. This in fact defines a group structure on
the set P i c(X ) of complex line bundles on X . Since P i c(X ) is represented
by CP∞, this structure must be given by maps

m :CP∞×CP∞→CP∞

This, in turn, induces a map

E∗(CP∞)→ E∗(CP∞×CP∞).

By the above, this is just a map

E∗[[x]]→ E∗[[x1, x2]].

Thus, x is mapped to a power series F (x1, x2). Now the tensor product
⊗ on line bundles satisfies several properties: unitality, associativity, com-
mutativity. These translate into properties of F (x1, x2). In particular, they
imply

(1) F (0, x) = F (x, 0) = x,
(2) F (F (x, y), z) = F (x, F (y, z)),
(3) F (x, y) = F (y, x).
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Now if L is a line bundle on X , its dual bundle L∨ is an inverse of L under
the tensor product

L⊗ L∨ ∼= ε.
The dualization of a line bundle is represented by a map

CP∞→CP∞

and hence we have a map

ι : E∗CP∞→ E∗CP∞.

This has the property
F (x, ιx) = 0.

This is an example of a formal group law.

Definition 4.8. A 1-dimensional commutative formal group law over a (graded)
ring R is a (homogenous) element of R[[x1, x2]] which satisfies the prop-
erties above. That is, it is a pair (F , ι) where F ∈ R[[x1, x2]] and ι ∈ R[[x]]
such that the following properties hold

(1) F (0, x) = F (x, 0) = x,
(2) F (F (x, y), z) = F (x, F (y, z)),
(3) F (x, y) = F (y, x), and
(4) F (x, ιx) = 0.

We call ι the formal inverse.

Observe that these properties imply that

F (x1, x2) = x1+ x2+
∑

i , j>0

ai j x
i
1 x j

2 .

Indeed, we have a priori that

F (x1, x2) =
∑

i , j≥0

ai j x
i
1 x j

2

for ai j ∈ R. Then property (1) shows that a00 = 0,

ai0 =
¨

1 i = 1
0 i 6= 1

and

a0 j =
¨

1 j = 1
0 j 6= 1

Observe that property (3) implies the following symmetry

ai j = a j i

for all i and j . The second relation (2) implies a great number of identities
amongst the ai j . ...write down

example...
write down
example...
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Example 4.9. Let E =HZ. Then m∗(x) = x1+ x2.

Example 4.10. If E = KU then we have x = β−1(1− γ ). Recall that the
map

m :CP∞→CP∞×CP∞

was defined so that it represents the tensor product of line bundles, that is

m∗(γ ) =π∗1γ ⊗π
∗
2γ .

This implies that in K∗(CP∞),

m∗x =β−1(1− γ ⊗ γ ).
Now observe that γ = 1−βx. Let x =β−1(1−γ⊗1) and y =β−1(1−1⊗γ )
in K2(CP∞×CP∞). Then

γ ⊗ γ = (1−βx)(1−βy)

= 1−βy −βx +β2xy.

Hence
m∗(x) = x + y −βxy.

This is what is called the multiplicative formal group ÒGm.

Example 4.11. If E =M U , then we get a formal group law F (x1, x2)where
ai j ∈ π2(i+ j−1)(M U ). This formal group law turns out to be rather com-
plicated.

Remark 4.12. People, including me, often write x+F y instead of F (x, y)
for a formal group law F . When F arises from a complex oriented theory
E .

We now remark on relating complex oriented theories. Suppose that E
is a complex oriented theory with complex orientations xE . Suppose fur-
ther that f : E → F is a morphism of ring spectra. Then we can endow F
with a complex orientation. Indeed, if i :CP 1→CP∞ is the standard in-
clusion, then i ∗xE = u g E where g E is the canonical generator of eE2(CP 1)
and u ∈π∗E is a unit. Pushing forward via f gives a class f∗x

E in F ∗(CP∞)
such that

i ∗ f∗x
E = f∗i

∗xE = f∗(u g E ) = f∗(u)g
F .

As u was a unit in π∗E , we have that f∗u is a unit in π∗F . This shows that
f∗x

E is a complex orientation of F . Moreover, we find that

m∗( f∗x
E ) = f∗m

∗(xE ) = f∗F
E (xE

1 , xE
2 ) = ( f∗F

E )( f∗x
E
1 , f∗x

E
2 ).

Here, we have written f∗F
E for the formal power series

x + y +
∑

i , j≥0

f∗(ai j )x
i y j .
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In particular, this shows that f∗x
E is a generator of F ∗(CP∞).

Now, more often than not, the spectrum F will already be endowed
with a complex orientation xF . Now xF is a also a generator of F ∗(CP∞),
and this generator will give rise to a different formal group law F F (pardon
the hideous notation). So how are f∗F

E and F F related? Well, since f∗x
E

and xF are both generators for F ∗(CP∞), we can express f∗X
E as a formal

power series in xF . Thus, there are ci ∈π∗F such that

f∗x
E =

∑

i≥1

ci (x
F )i = ϕ(xF )

for ϕ(x) ∈ F∗[[x
F ]]. Since f∗x

E also generates F ∗CP∞, it must be the case
that ϕ(x) ∈ F∗[[x

F ]]× is an element of the group of units. This shows that

d
d xF

ϕ(xF )
�

�

�

�

xF=0
= c1

is a unit of π∗F . Note also that f∗u
E = c1uF .

We have thus shown the following.

Lemma 4.13. We have the identity

g (F F (xF
1 , xF

2 )) = ( f∗F
E )(g (xF

1 ), g (xF
2 )).

This leads us to a notion from the theory of formal group laws.

Definition 4.14. Let F and G be two formal group laws over a ring R.
Then a homomorphism ϕ : F →G is a power series ϕ ∈ R[[x]] such that

ϕ(F (x1, x2)) =G(ϕ(x1),ϕ(x2)).
We say that ϕ is an isomorphism if ϕ is invertible as an element of R[[x]].
This is the same as saying

d
d x
ϕ(x)

�

�

�

�

x=0

is a unit u. We say that ϕ is a strict isomorphism if u = 1.

Remark 4.15. Using the notation x +F y, we can see why the above is
called a homomorphism of formal group laws. It is the same as writing

ϕ(x +F y) = ϕ(x)+G ϕ(y).

Thus we can rephrase the previous lemma as follows.

Lemma 4.16. Suppose that E and F are complex oriented ring spectra and
f : E → F is a morphism of ring spectra. Then there is an isomorphism
g : f∗F

E → F F between the formal group laws determined by f∗x
E and xF .

Corollary 4.17. If E is a complex oriented ring spectrum then any two com-
plex orientations of E give rise to isomorphic formal group laws.
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Remark 4.18. The above corollary can be thought of in the following
terms. A formal group law requires a coordinate. But underlying a formal
group law is an object called a formal group, it is analogous to the difference
between a local chart of a Lie group around the identity element and the
Lie group itself. So the above is saying that different complex orientations
of E give rise to different formal group laws, but they are all presentations
of the same underlying formal group. So to a complex orientable E we can
associate a unique formal group ÒGE .

We will now calculate the E -homology ofCP∞ and related spaces. First,
I need to say something about the relationship between the homological
and cohomological AHSS.

Proposition 4.19. [cf. Kochman]Let E be a ring spectrum, let X be a CW add referencesadd references
complex. Consider the AHSS

E2
p,q =Hp(X , Eq) =⇒ Ep+q(X )

and
E p,q

2 =H p(X ; Eq) =⇒ E p+q(X ).
Then there is a natural pairing

〈−,−〉 : E n,−s
r ⊗ E r

n,t → Es+t

such that
• The pairing on E2⊗ E2 is the usual one on singular (co)homology,
• 〈dr x, y〉= 〈x, d r y〉,
• the pairing on E∗(X )⊗ E∗X induces the pairing on E∞⊗ E∞.

We use this to show the following.

Proposition 4.20. We have the following.
(1) The homological Atiyah-Hirzebruch spectral sequences for the E-homology

of CP n,CP∞,CP n ×CP m and CP∞×CP∞ all collapse at E2.
(2) E∗(CP n) and E∗CP n are dual finitely generated free modules over E∗,
(3) There is a unique element βn ∈ E∗CP n such that

〈x i ,βn〉= δi n

We write the image of the βn in E∗CP∞ by βn as well.
(4) E∗CP n is free over E∗ onβ0,β1, . . . ,βn . E∗CP∞ is free onβi for all

i ∈N, and E∗(CP n×CP m) has as a basisβiβ j for i ≤ n and j ≤ m.
Same thing for CP∞×CP∞.

(5) The external product

E∗CP∞⊗E∗
E∗CP∞→ E∗(CP∞×CP∞)

is an isomorphism.
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Proof. The proof of (1) is straightforward. We have that H∗(CP n) =Z{b0, . . . , bn}
where bi is dual to x i . Using the pairing, we have that each bi is a perma-
nent cycle since x i is a permanent cycle. This proves (1) for CP n. We
obtain the corresponding statement for CP∞ via naturality, and the argu-
ment for the others is analogous. We obtain (2) and (3) immediately from
the pairing between the AHSS. From part (1), we see that the E2-term of
the AHSS of each has a basis given by the βi or βiβ j . This gives rise to
(4) and (5). �

Remark 4.21. Note that theβi are dependent on the complex orientation
x. When we want to emphasize this dependence, we shall write βE

i .

Remark 4.22. Note that the pairing

E∗CP∞⊗E∗
E∗CP∞→ E∗

induces a homomorphism

E∗(CP∞)→ homE∗
(E∗CP∞, E∗)

which, in this case, is an isomorphism. The correspondence works as fol-
lows. If

∑

an xn
E ∈ E∗CP∞, then the corresponding map E∗CP∞→ E∗ is

determined by bn 7→ an.

Now, in light (5) of the last proposition, the diagonal map

∆ :CP∞→CP∞×CP∞

endows E∗CP∞ with a coalgebra structure. Let’s recall how this works in
singular (co)homology. We have the pairing

〈·, ·〉 : H ∗CP∞⊗H∗CP∞→Z
and we have the adjunction

〈∆(a⊗ b ),β〉= 〈a⊗ b ,∆∗β〉.
Note that∆∗ is how we get the cup product. So we have

〈x i ⊗ x j ,∆∗βk〉= 〈∆
∗(x i ⊗ x j ),βk〉= 〈x

i+ j ,βk〉.
This shows that

∆∗βn =
∑

i+ j=n

βi ⊗β j .

The same argument generalizes to complex oriented theories. Thus we
have shown,

Proposition 4.23. The coproduct on E∗CP∞ is given by

∆(βn) =
∑

i+ j=n

βi ⊗β j .
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Since βi above is actually dependent on the complex orientation, we
should see how they are transformed by morphisms of complex oriented
ring spectra. Now suppose that we are in the situation as above: f : E → F
is a morphism of ring spectra and E and F have complex orientations xE

and xF respectively. As we saw before, there is a power series ϕ(x) such
that

ϕ(xF ) = f∗x
E ,

so that
ϕ−1( f∗x

E ) = xF

Let
ϕ−1(x) = d1x + d2x2+ d3x3+ · · ·

where di ∈π∗F . We also get that

(xF ) j =
∑

i

di , j ( f∗x
E )i

for some di , j ∈π∗F . Then the usual pairing shows that

Lemma 4.24. f∗β
E
i =

∑

j di , jβ
F
j .

Its also a good idea to try and determine E∗BU . The reason this is a good
idea is because, since E is complex oriented, we have a Thom isomorphism
for complex virtual bundles. Thus we get an isomorphism

E∗BU ∼= E∗MU.

Of particular interest to us when we look at the Adams-Novikov spectral
sequence will be the case E =MU.

Towards the end of calculating E∗BU , its a good idea to calculate E∗BU (n).
Now observe that there are maps

BU (n)×BU (m)→ BU (n+m)
which represents the functor

ξ ,η 7→ ξ ⊕η
where ξ and η are rank n and m bundles respectively. These fit into a
commutative diagram

BU (n)×BU (m) BU (n+m)

BU ×BU BU

where the bottom map represents the functor of direct sums of virtual
vector bundles. These maps give rise to pairings

MU(n)∧MU(m)→MU(n+m)



52 D. CULVER

and hence taking the colimits we get a map

MU∧MU→MU.

This makes MU into a ring spectrum. This is the structure which gives
rise to ring structures on E∗BU and E∗MU. Finally, there is a map

ϑn : (CP∞)×n→ BU (n)

which represents the functor

L1, . . . , Ln 7→ L1⊕ · · ·⊕ Ln

where Li are line bundles. This induces a map

E∗(CP∞)⊗E∗n→ E∗(BU (n)).

However, since the direct sum is symmetric, this map naturally factorizes
through the orbits (E∗(CP∞)⊗n)Σn

, and hence gives a map

Symn
E∗
(E∗CP∞) = (E∗(CP∞)⊗n)Σn

→ E∗BU (n).

We let βi be the image of βi ∈ E∗CP∞ under the standard map

BU (1)→ BU (n).

Proposition 4.25. The homological Atiyah-Hirzebruch spectral sequences for
BU (n) and BU collapse at E2. Moreover, we have that

E∗BU (n)∼= Symn
E∗

E∗CP∞

and so in the colimit we have

E∗BU ∼= Sym•E∗E∗CP∞/(β0− 1).

Finally, these homology groups are also coalgebras, and their coproduct is de-
termined by

ψβk =
∑

i+ j=k

βi ⊗β j .

Proof. First, note that we can proceed by induction on n. Assume n ≥ 2.
Note that we have a commutative diagram

BU (1)× (BU (1))×n−1 BU (1)×BU (n− 1)

BU (n)

1×ϑn−1

ϑn f

So we can examine the map f via the Atiyah-Hirzebruch spectral sequence
using the inductive hypothesis. Note that we get pairing

E r (BU (1))⊗E∗
E r (BU (n− 1))→ E r (BU (n))



CHROMATIC HOMOTOPY THEORY 53

of Atiyah-Hirzebruch spectral sequences. If we let yi be the class which
detectsβi in the Atiyah-Hirzebruch spectral sequence for BU (1), then we
see that the E2-term for BU (n) is free on monomials yi1

· · · yin
for i j ≥ 0.

Since the yi and their products are all permanent cycles, and since we have
a pairing of spectral sequences, it follows that the E2-term for BU (n) is
generated as an E∗-module by permanent cycles. So the AHSS collapses.
This also shows that the map we produced above

Symn
E∗
(E∗CP∞)→ E∗BU (n)

is in fact an isomorphism.
Since the map ϑn is compatible with the diagonal on both sides we find

that it induces a map of coalgebras, and so we get the corresponding state-
ment regarding the coproduct. �

One can dualize and use the Atiyah-Hirzebruch spectral sequence again
(Proposition 4.19) to also show the following.

Proposition 4.26. Since E∗BU (n) is a finitely generated free module over
E∗, we have that the map

E∗(BU (n))→ homE∗
(E∗BU (n), E∗)

is an isomorphism. We deduce that

E∗BU (n)∼= E∗[[c1, . . . , cn]]

where the ci are dual to βi
1. Taking the colimit yields an isomorphism

E∗BU ∼= E∗[[c1, c2, . . .]].

Furthermore, these cohomology rings have a coproduct determined by

ψck =
∑

i+ j=k

ci ⊗ c j .

Proof. I will not give details for this. See Switzer 16.32 for details. �

At this point, we can now deduce the structure of E∗MU. At this point, I
should probably remind you about how to get a stable homological Thom
isomorphism for MU. I will take as given the fact that there is a Thom
isomorphism for each BU (n), namely an isomorphism

Φ∗ : eH∗+2n(MU(n);Z)→H∗(BU (n);Z); x 7→ x _ uγn
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obtained by capping with the Thom class. It can be shown (again see
Switzer) that the following diagram commutes

eH∗+2n(MU(n)) eH∗+2n+2(Σ
2MU(n)) eH∗+2n+2(MU(n+ 1))

Hq(BU (n)) H∗(BU (n+ 1))

Σ2

Φ∗
Φ∗

M (in)

Φ∗

in

and that all of the vertical maps are isomorphisms. So in the colimit we
get a “stable” Thom isomorphism

Φ∗ : H∗MU→H∗BU .

The same argument shows that whenever E is complex oriented, then we
get an isomorphism

Φ∗ : E∗MU→ E∗BU .

Proposition 4.27. The map Φ∗ is a ring homomorphism.

Proof. See Lemma 16.36 of Switzer. �

We obtain as a corollary the following;

Theorem 4.28. E∗MU∼=Z[b1, b2, . . .] where Φ∗(bi ) =βi .

Recall that we have a map

f :Σ−2Σ∞MU(1)→MU.

We want to relate the βi to the generators bi above via the map f . One
can show the following.

Theorem 4.29. The map f is determined in E-homology by

f∗(u
Eβi+1) = b E

i .

We put in uE so that f∗(β0) = 1.

Proof. See Switzer �

Remark 4.30. This is taken as the definition of the b E
i by Adams in [4].

There, Adams is implicitly using the fact that this theorem is true in inte-
gral homology. He imports this to show that if we define b E

i as the class
f∗(u

EβE
i ), then this determines a basis of the E2-page of the AHSS for MU

consisting of permanent cycles. He does this so that he can completely
circumvent any discussions about a Thom isomorphism for more general
theories.
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Theorem 4.31. Suppose that E is a complex oriented theory with complex
orientation xE . Suppose that we have another generator of E∗(CP∞) given
by

f (xE ) =
∑

i≥0

di x i+1
E ∈ eE2(CP∞)

with uE d0 = 13. Then there is a unique (up to homotopy) morphism g : add internal
reference for
footnote

add internal
reference for
footnote

MU→ E of ring spectra
g : MU→ E

such that g∗xMU = ϕ(xE ).

Proof. Since E∗MU and E∗MU are both free E∗-modules and finitely gen-
erated in each degree, we have an isomorphism add some com-

ments earlier
about E∗MU.

add some com-
ments earlier
about E∗MU.

E∗MU→ homE∗
(E∗MU, E∗).

Similarly, we have an isomorphism

E∗(MU∧MU)→ homE∗
(E∗MU∧MU, E∗).

The first isomorphism guarantees shows that there is a bijective correspon-
dence between homotopy classes of maps

g : MU→ E

and E∗-linear maps
ϑ : E∗MU→ E∗.

The second isomorphism allows us to determine when g is a map of ring
spectra, i.e. when does the following diagram commute

MU∧MU E ∧ E

MU E

g∧g

µMU µE

Note that ϑ : E∗MU→ E∗ is a morphism of E∗-algebras if and only if the
following diagram commutes,

E∗MU⊗E∗
E∗MU E∗⊗E∗

E∗

E∗MU E∗

E∗µ
MU

3This is a necessary condition from our previous discussions
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but since the right hand vertical map is the canonical isomorphism, we can
really regard this as a commutative triangle. Note that the top composite
is the map corresponding to µE ◦ (g ∧ g ). Note also that there is a map

(E∗µ
MU)∗ : homE∗

(E∗MU, E∗)→ homE∗
(E∗MU∧MU, E∗).

Then the second diagram commutes if and only if

(E∗µ
MU)∗(ϕ) =ψ

and note that this latter condition is equivalent to the first diagram com-
muting.

The condition that
g∗x

MU =
∑

i≥0

di x i+1
E

is equivalent to
ϑ(bi ) = uE di

for i ≥ 0. Provided that uE d0 = 1, there is exactly one algebra map ϑ :
E∗MU→ E∗ with this property. �

Example 4.32. As a consequence we can infer the existence of maps of
ring spectra out of MU. For example, there is exactly one multiplicative
map

H∗(MU;Z) =Z[b1, b2, . . .]→H∗(pt ;Z) =Z
which then corresponds to the map

g : MU→HZ
such that

g∗x
MU = xH .

Likewise, there is a unique map f : MU→KU such that

f∗x
MU =β−1(1− γ ) = xK .

The map f corresponds to the mapmake this ex-
ample more
explicit

make this ex-
ample more
explicit

So at this point we have a calculation of E∗MU = π∗(E ∧MU) when
E is complex oriented. But there is a lot more structure and things to say
about this homology group in general. First, recall that the Boardmann
map is the map

[X ,Y ]→ [X , E ∧Y ]
which is defined by taking f : X → Y and composing it with the map

Y ' S0 ∧Y → E ∧Y.

There is also the map

p : [X , E ∧Y ]→ homE∗
(E∗X , E∗Y ); h 7→ 〈h,−〉.
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Here, 〈h,−〉 denotes the Kronecker pairing. This is defined as follows: if
h : X → E ∧Y and k : S0→ E ∧X then 〈h, k〉 is defined as the composite

S0→ E ∧X → E ∧ E ∧Y → E ∧Y,

so 〈h, k〉 ∈ E∗Y . We naturally have the commutative triangle

[X ,Y ] [X , E ∧Y ]

homE∗
(E∗X , E∗Y )

B

α p

where α takes a map f : X → Y to E∗ f . This triangle is interesting in the
case that E is complex oriented and X or Y is CP∞,BU , or MU.

So let E be a complex oriented ring spectrum. Then we have two canon-
ical maps

E ' E ∧ S0→ E ∧MU

and
MU' S0 ∧MU→ E ∧MU.

We can use these two morphisms to push-forward the generators xE and
xMU to E ∧MU. So E ∧MU has two natural complex orientations. We
abuse them and call them xE and xMU to remember from whence they
came. We know that these complex orientations can be related by some
power series.

Lemma 4.33. In (E ∧MU)∗(CP∞) we have

xMU =
∑

i≥0

u−1
E b E

i x i+1
E

where b E
i are the generators of π∗(E ∧MU) = E∗MU.

Proof. Let X = CP∞ and Y =MU in the triangle above. Since xMU is a
reduced class, so is B xMU. Then by Theorem 4.29, we have

(α(xMU))(uEβE
i+1) = b E

i ,

but we also have
p(x j

E )(β
E
i ) = 〈x

j
E ,βE

i 〉= δi j .

In this case, the map p is an isomorphism. So by comparing these formulas
we can prove the result.

To see how, let g (x) =
∑

i≥0 di x i+1 such that xMU = g (xE ). Now the
class xMU ∈ [CP∞,MU] is sent to xMU ∈ (E∧MU)∗CP∞ under the Board-
mann map. On the other hand, we also have the class xE ∈ (E∧MU)∗(CP∞).
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Let h(x) be the formal power series

h(x) =
∑

i≥0

u−1
E b E

i x i+1.

We wish to show that h(xE ) = g (xE ). To do that, since p is an isomor-
phism it is enough to show that p(h) = p(g ). Now, by commutativ-
ity of the diagram, we have p(g ) = α(xMU). Thus, from the fact that
p(x j

E )(β
E
i ) = δi j , it follows that

p(g )(βE
i+1) = di

but the commutativity of the triangle shows that

p(g )(βE
i+1) = u−1

E b E
i

Thus g = h as desired. �

Corollary 4.34. Let FE and FMU denote the formal group laws arising from
the complex orientations on E and MU respectively, and let these also denote
the induced formal group laws over π∗(E ∧MU) via the maps E → E ∧MU
and MU→ E ∧MU. Then

FMU(x
MU
1 , xMU

2 ) = g (FE (g
−1xE

1 , g−1xE
2 ))

where g (x) =
∑

i≥0(u
E )−1b E

i x i+1.

4.2. The Universal Formal Group Law and Lazard’s Theorem. At this
point, I should probably say some words about the universal formal group
law and how it relates to MU. Suppose that F (x, y) is a formal group law
over a ring R. Recall that

F (x, y) = x + y +
∑

i , j>0

αi j x
i y j .

As we mentioned before the conditions on F imply many relations on αi j .
Let A := Z[ai j | i , j > 0] denote the polynomial ring on generators ai j .
Then the formal group law F uniquely determines a map

A→ R;ai j 7→ αi j .

However, because there are many relations amongst the αi j this map has to
factor through the ideal I generated by all the necessary relations amongst
the αi j . For example, we have ai j − a j i in I . More generally, let

eF (x, y) := x + y +
∑

i , j>0

ai j x
i y j
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over A. In order to make this a formal group law, we need

eF (x, eF (y, z))− eF (eF (x, y), z) =
∑

i , j ,k>0

bi j k x i y j zk

is 0. So we have to add bi j k ∈ I .

Definition 4.35. The Lazard ring is L :=A/I . Let F u be the power series

F u(x, y) = x + y +
∑

i , j>0

ai j x
i y j

where ai j is the image of ai j ∈A.

Note that, by definition, F u is a formal group law. By construction, the
following is true.

Proposition 4.36. The functor

F GL : Rings→ Set

where
F GL(R) := { formal group laws over R }

is represented by L. That is, we have a natural isomorphism

Rings(L, R)∼= F GL(R); (ϕ : L→ R) 7→ ϕ∗F
u .

Remark 4.37. In light of this proposition, we call F u the universal formal
group law.

Remark 4.38. As we have seen before, if f : R→ S is a morphism of rings
and F is a formal group law on R, then we have a formal group law f∗F
over S obtained by applying f to the coefficients of F . In the literature,
one will often times see the notation f ∗F instead. The rational being that
f is really a map

f : Spec(S)→ Spec(R)
and that f is being used to pull-back the formal group law over to one over
S.

Now, in topology, we have a grading hanging around everywhere. I have
been mostly agnostic about this up to this point. But we do need to pin it
down now. It also shows up in the proof of Lazard’s theorem. We put a
grading on L by setting |x|= |y|=−2 and |ai j |= 2(i + j −1). In this way,
the formal group law F u is a homogenous expression in degree −2.

Now we don’t call L the Lazard ring because it carries the universal
group law, but rather because of the following difficult theorem.
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Theorem 4.39 (Lazard). As a graded ring L is given by

L=Z[x1, x2, . . .]

where |xi |= 2i .

4.3. Quillen’s Theorem. Quillen’s theorem is the following amazing state-
ment.

Theorem 4.40 (Quillen). The natural map L → MU∗ classifying the for-
mal group law arising from the canonical complex orientation on MU is an
isomorphism.

Unfortunately, I didn’t really have time to prove this in class... :(

4.4. The ring MU∗MU. Let’s now examine MU∗MU in some further de-
tail. From now on, I will make the tacit assumption that the complex ori-
entations restrict to the canonical generator in eE2(CP 1). This means we
don’t have any units to bother with.

First, observe that it follows from Theorem 4.28 in the case E = MU
that

MU∗MU∼=MU∗[b1, b2, . . .].

In particular, this means that the pair (MU∗,MU∗MU) is a Hopf algebroid,
and so we get an Adams spectral sequence based on MU. This is called the
Adams-Novikov spectral sequence

ExtMU∗MU(MU∗,MU∗(X )) =⇒ π∗X .

In this case, the abutment is in fact just the homotopy groups of X . How-
ever, in order to do any sort of calculation, we really need to at least un-
derstand various formulas in the Hopf algebroid. In particular, we need to
understand

ηL,ηR : MU∗→MU∗MU

and

ψ : MU∗MU→MU∗MU⊗MU∗
MU∗MU.

In this case, its easier to approach this more generally and to consider
E∗MU. In this case, we have

4.5. The Brown-Peterson spectrum.type up notes
from these lec-
tures... prob-
ably do over
spring break

type up notes
from these lec-
tures... prob-
ably do over
spring break

4.6. Formulas in BP -theory.

type up notes
from these lec-
tures... prob-
ably do over
spring break

type up notes
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tures... prob-
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spring break



CHROMATIC HOMOTOPY THEORY 61

4.7. Formal groups. Thus far we have been discussing formal group laws.
These are certain power series with certain properties. However, they are
actually attached to more geometric objects.

Fix a base ring A.

Definition 4.41. An adic A-algebra is an A-algebra R along with an ideal
I ⊆ R so that R is complete with respect to the I -adic topology. This means
that

R∼= lim
k

R/I k .

Let ad i c(A) denote the category of adic A-algebras.

Example 4.42. The rings A[[x1, . . . , xn]] are examples of adic A-algebras.

Remark 4.43. Note that the functor

F : ad i c(A)→ Set
given by sending R to the set of n-tuples of topologically nilpotent ele-
ments is represented by A[[x1, . . . , xn]]. The functor represented by A[[x1, . . . , xn]]
is often denoted as Spf(A[[x1, . . . , xn]]). More generally, the functor repre-
sented by R is denoted as Spf(R). We think of Spf(A[[x1, . . . , xn]]) as the
formal affine space bAn.

Definition 4.44. An n-dimensional formal Lie variety is a functor F : ad i c(A)→
Set which is isomorphic to the functor represneted A[[x1, . . . , xn]]. This
gives a category of formal Lie varieties. A formal group is a group object
in this category. Equivalently, this is representable a functor

F : ad i c(A)→Ab.

The relationship between 1-dimensional formal groups and formal group
laws is as follows. LetG be a formal group over A

G : ad i c(A)→Ab.

Then G is a 1-dimensional formal Lie variety, and so there is a coordinate
x :G∼= bA1. The group operations

G×G→G
then gives a diagram

G×G G

bA1× bA1
bA1

x×x x .

The bottom morphism is then given by a morphism

ϕ : A[[x]]→A[[x]]b⊗AA[[x]]∼=A[[x, y]].
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This is of course given by a formal power series F (x, y), and it is easy to
check that F is a formal group law.

Remark 4.45. The group axioms also show that this morphismϕ is a Hopf
algebra object in adic A-algebras.

In the other direction, if we have a formal group law F , then we can
define a formal groupGF by defining the functor

GF : adic(A)→Ab

by setting
GF (R) := {x ∈ R | lim

n→∞
xn = 0}.

This functor takes values in abelian groups because, if x, y ∈GF (R), then

x +F y := lim
n→∞

Fn(x, y)

gives an element in R. Here, Fn(X ,Y ) denotes the polynomial obtained
from F by considering only terms with degree ≤ n.

4.8. Height of a p-typical formal group. Suppose F and F ′ are formal
group laws over a ring A.

Lemma 4.46. Let f : F → F ′ be a strict isomorphism of formal group laws.
If f ′(0) = 0 then f ′(x) = 0.

Proof. As f is an isomorphism, we have

f F (x, y) = F ′( f (x), f (y)).

Applying ∂
∂ y

�

�

�

y=0
to both sides, we get

f ′(F (x, 0))F2(x, 0) = F ′2( f (x), 0) f
′(0).

Since F (x, y) = x + y +
∑

i , j>0 ai j x
i y j , we see that

∂2F (x, 0) = 1+O(x).
Thus F2(x, 0) has a multiplicative inverse. As f ′(F (x, 0)) = f ′(x), we find

f ′(x) = F2(x, 0)−1F ′2( f (x), 0) f
′(0) = 0.

�

Suppose now that F and F ′ are formal group laws over a Fp -algebra A.

Proposition 4.47. Let F , F ′ be formal group laws over a Fp -algebra A. Let
f : F → F ′ be a strict isomorphism. Then either f (x) = 0 or

f (x) = g (x pn
)

for some n ≥ 0 and g (x) ∈A[[x]]with g (0) = 0 and g ′(0) 6= 0. In particular,
f has leading term x pn .
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Proof. Let
σ : A→A

denote the Frobenius. Then we have a formal group law σ∗F : If F is given
by

F (x, y) = x + y +
∑

i , j>0

ai j x
i y j

then
σ∗F (x, y) = x + y +

∑

i , j

a p
i j x

i y j .

Note that the series h(x) = x p defines a homomorphism h : F → σ∗F .
Now suppose that f ′(0) 6= 0, then we take g (x) = f (X ). If f (x) = 0,

then there is nothing to do.
So suppose that f ′(0) = 0. This implies that

f (x) = ap x p + a2 p x2 p · · · .

Thus, we have a factorization

F F ′

σ∗F .

f

h
g

Thus, f (x) = g (x p) for some power series g . We then ask if g ′(0) = 0. If
no, then we stop, otherwise we can perform the same step.

We need to check that this process stops unless f = 0. Let gn(x) denote
the series we obtain from the nth iteration of this process. So f (x) =
gn(x

pn ). If g ′n(0) = 0 for all n, then it is clear that f = 0. �

Of particular interest is the p-series. As F is a commutative formal
group, we have a homomorphism

[p]F : F → F .

Thus, by the above result, we have a power series g (x) such that

[p]F (x) = g (x pn
) = vn x pn

+ · · ·

for some vn ∈A with vn 6= 0.

Definition 4.48. Let A = k be a field of characteristic p and let F be a
formal group law over k. Then F has height n if

[p]F (x) = vn x pn
+ · · ·

for some vn 6= 0 in k. If [p]F (x) = 0 then we say that F has height∞.
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The point here is that if vn 6= 0 in a field k, then it is a unit. If we are
working more generally over anFp -algebra A then we need to be a bit more
careful.

Definition 4.49. Let A be an Fp -algebra and let F be a formal group law
over A. Then we say that F has height at least n if

[p]F (x) = vn x pn
+ · · ·

with vn 6= 0. We say that it has height exactly n if vn is a unit in A.

Remark 4.50. Note that having height at least n doesn’t change under
strict isomorphism. Thus we can attach a height to any formal group.

The idea here is that we should regard F has giving a formal group over
the base scheme Spec(A). Since A is not a field, the affine scheme Spec(A)
could have many closed points. So consider a closed point

x : Spec(κ(x))→ Spec(A)

then we can form the pull-back x∗GF of the formal groupGF ; the pullback
x∗GF is a formal group over κ(x). What can happen is that vn could end
up being 0 under the projection to the residue field at x. So the formal
groupGF could be of higher height over some closed point x. However, if
we ask that vn is invertible in A, then vn never projects to 0 in any residue
field, and soGF will globally have height n.

Example 4.51. If ÒGa is the additive formal group, then

[p]
ÒGa
(x) = p x,

and so over Fp -algebras, the p-series is identically 0.

ConsiderÒGm the multiplicative formal group. Recall that the series was
determined by

F (x, y) = 1− (1− x)(1− y) = x + y − xy.

Thus,
[p]Gm

(x) = 1− (1− x)p .

In the case that A is an Fp -algebra, then the p-series becomes

[p]Gm
(x) = x p .

So in this case v1 = 1. This shows that ÒGm and ÒGa are not isomorphic as
formal groups in positive characteristic.
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Now restrict toZ(p)-algebras A. Then, by Cartier’s theorem, any formal
group law F over A is strictly isomorphic to a p-typical one. So we may as
well assume that all of our formal groups are p-typical. We can relate the
Araki generators to the height.

Proposition 4.52. Let F denote the universal p-typical formal group law
over V =π∗BP and let v1, v2, . . . be the Araki generators. Then

[p]F (x) = p x +F v1x p +F v2x p2
+F · · · .

The Hazewinkel generators satisfy the same equality but mod p.

Proof. We prove the case of the Araki generators. Recall that the Araki
generators are recursively defined by the following equation

pλn =
∑

0≤i≤n

λi v
p i

n−i .

Now note that we have

log([p]F (x)) = p log(x) =
∑

i≥0

pλi x p i
.

Using Araki’s equation, we have that the last sum can be expressed as

∑

i≥0

 

∑

0≤ j≤i

λ j v
p j

i− j

!

x p i
=
∑

i , j≥0

λi v
p i

j x p i+ j
.

Thus we have the equality

log([p]F (x)) =
∑

i≥0

pλi x p i
=
∑

i , j≥0

λi v
p i

j x p i+ j
=
∑

j≥0

log(v j x
p j
).

Exponentiating both sides leads to

[p]F (x) = exp

 

∑

j≥0

log(v j x
p j
)

!

=
F
∑

j≥0

v j x
p j

.

�

Corollary 4.53. The vi ’s are integral, i.e. they are indeed elements of V .

This is actually the first step in showing that the Araki generators are
generators of V .

Theorem 4.54 (Lazard). Over a separably closed field, two formal group laws
are isomorphic if and only if they have the same height.
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5. THE ALGEBRAIC CHROMATIC SPECTRAL SEQUENCE

In this section, we develop the algebraic chromatic spectral sequence. This
is a spectral sequence which computes the E2-term of the Adams-Novikov
spectral sequence. We will begin with giving a “big picture” overview of
this spectral sequence, and then describe an explicit algebraic construction.

5.1. Big picture. As we have discussed before, the Hopf algebroid (L, LT ) =
(MU∗,MU∗MU) corresponds to formal group laws and strict isomorphisms
between them, and that the Hopf algebroid (V ,V T ) = (BP∗,BP∗BP) cor-
responds to p-typical formal group laws and strict isomorphisms between
those. We can be expressed in terms of the language of stacks.

If R is a ring let Spec(R) denote the functor represented by R, i.e.

Spec(R) = CAlg(R,−).

Then the pair (Spec(L), Spec(LT )) gives a functor

CAlgZ→ Grpd; R 7→ (F GL(R), SI (R)),

where F GL(R) denotes formal group laws over R and SI denotes strict
isomorphisms between formal group laws over R. We can slightly rephrase
this as a functor

Affo p → Grpd.

Here we are just using the equivalence CAlgZ with Affo p .

5.2. Algebraic construction.

6. MORAVA’S CHANGE OF RINGS

7. THE TOPOLOGICAL STRUCTURE

APPENDIX A. STACKS AND HOPF ALGEBROIDS

In this section, I give a summary of the relationship between commuta-
tive Hopf algebroids and stacks. The main references for this appendix are
[13], [16], and [7]. Another great resource for stacks is [14]. This section
is not intended to give a full development of the theory, but rather just
highlight the salient parts for our purposes.

A.1. Stacks. The starting point for thinking about stacks is the functor
of points formalism of Grothendieck. Let R be a ring. Then the affine
scheme Spec(R) can be thought of a pair consisting of the Zariski space of
prime ideals of R with a sheaf of rings. A morphism of affine schemes

Spec(R)→ Spec(S)
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is then defined as a continuous map of spaces | f | along with a morphism
of sheaves

f # : OSpec(S)→ f ∗OSpec(R).

Taking global sections gives a morphism of rings

S→ R.

The definitions of affine schemes are rigged up in such a way that the mor-
phism

Spec(R)→ Spec(S)
and the map

S→ R
are equivalent pieces of data. Thus, we could equally well take as the def-
inition of Spec(R) as the representable functor CAlg(R,−). The above is
also saying that we have an equivalence of categories

CAlg' Affo p .

More generally, we regard a scheme X as a presheaf on affine schemes

X : Affo p → Set
and we intuitively think of X (R) as the scheme-theoretic maps Spec(R)→
X .

Remark A.1. In the case that X = Spec(S), then X (R) is intuitively the
scheme-theoretic maps Spec(R) → X , which is just a map S → R. This
another reason we must define Spec(S) as the functor CAlg(S,−).

In order for X to be a scheme, its not enough that this just be a functor;
it must satisfy some locality conditions. For example, if we have a Zariski
cover {Ui} of Spec(R), then giving a map Spec(R) → X ought to be the
same as giving maps Ui → X which agree on overlaps. Moreover, we ask
that X is Zariski locally affine.

Let k be a commutative ring. There is, of course, a variant of the above
definitions for k-algebras CAlgk . We define A1

k := Spec(k[t ]).

Definition A.2 (cf. [6]). Let X be a presheaf on Affo p
k . The (regular) func-

tions on X are the natural transformations X →A1
k . This is clearly a ring

and we denote it by O(X ).

Remark A.3. Observe that for f ∈ O(X ), i.e. a map f : X →A1
k , we can

evaluate f on any element x ∈X (R). Indeed, an element x ∈X (R) is just
a morphism x : Spec(R)→X , we define f (x) as the composite

f (x) : Spec(R) X A1
k .x f
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Note that f (x) ∈ R.

Definition A.4 (cf. [6]). Let X be a presheaf on Affo p
k and let E ⊆ O(X )

be a collection of regular functions on X . We define a subfunctor

D(E)⊆X

by declaring

D(E)(R) := {x ∈X (R) | ( f (x)) f ∈E = R}.

We say that a subfunctor Y ⊆X is open if it is of the form D(E) for some
E ⊆O(X ).

Example A.5. Suppose that X = Spec(S) and that E = { f } ⊆ S. Then
D(E)(R) is the set of k-algebra homomorphisms S→ R which sends f to
a unit.

Remark A.6. Again, in the case X = Spec(R), then this is just CAlgk(k[t ], R).
So in this case, the functions on X are just R.

Definition A.7 (cf. [6,7] ). A presheaf of sets X on Affk is a k-scheme if it
satisfies the following two conditions,

(1) X is a sheaf in the Zariski topology: if f1, . . . , fn are elements of a
k-algebra A, and if f1+ · · ·+ fn = 1, then the following

X (A)
∏

X (A[ f −1
i ])

∏

X (A[ f −1
i f −1

j ])

is an equalizer diagram,
(2) X has an open cover by affine schemes.

A morphism of schemes is just a natural transformation of functors.

The first idea of a stack is to define it as a functor

X : Affo p
k → Grpd.

Of course, we want it to satisfy some locality conditions. Another
thing, though, is that the target Grpd is not just a category, but a 2-category.
So its too restrictive to ask for functors into Grpd; its better and more nat-
ural to ask that X is a pseudo-functor.

Example A.8. Here is the prototypical example to illustrate why we need
to consider pseudo-functors as opposed to usual 1-functors. Consider the
assignment

PrincG : Topo p → Grpd
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which takes a space X to the groupoid of principal G-bundles on X , for
a fixed Lie group G. Then a morphism f : X → Y of spaces induces a
pull-back morphism

f ∗ : PrincG(Y )→ PrincG(X ); (P → Y ) 7→ (P ×Y X →X ).

The problem is that if X Y Z
f g

is a composable pair of
maps, then we don’t have an equality of the functors (g ◦ f )∗ and f ∗ ◦ g ∗,
but only a natural isomorphism between the two. Thus, the above assign-
ment doesn’t define a functor, but only a pseudofunctor.

In order to avoid discussing pseudo-functors, we instead think of fibered
categories. There is a correspondence between these notions going by the
name of the Grothendieck construction. I will not spell this out, but you
can look it up in [17] or [8].

Definition A.9 (cf. [13]). A category fibered in groupoids over C is a cate-
gory X with a functor a : X→ C such that the following conditions hold:

(1) For every morphism ϕ : U →V in C and x ∈X such that a(x) =
U there is a morphism f : x→ y such that a( f ) = ϕ,

(2) For any f : y → x in X and object z ∈ X, the following is a pull-
back square of sets

homX(z, y) homX(z, x)

homC (a(x),a(y)) homC (a(z),a(x))

f∗

a( f )∗

Theorem A.10 (loose statement). A pseudofunctorC o p → Grpd is the same
thing as a category X→C fibered in groupoids.

The basic idea behind this theorem is that ifX→C is a category fibered
in groupoids, then we get a psuedofunctor F : C → Grpd by defining
F (V ) :=XV , the fibre of a over the object V . More precisely,XV is defined
to be the subcategory of X containing all objects x such that a(x) = V
and morphisms f such that a( f ) = 1V . In particular, the above theorem
states that if one has morphisms ϕ : V → U in C and an object x ∈ XU ,
then there is a unique way up to unique isomorphism to define an object
ϕ∗x ∈XV and a morphism f : ϕ∗x→ x such that a( f ) = ϕ.

Definition A.11. If x ∈XU and ϕ : V → U is a morphism in C , we will
often write x|V for ϕ∗x.

Exercise 23. Try proving this correspondence on your own. In particular,
try to see how the conditions in the definition give you a way of defining
F ( f ) for a morphism f : U →V .
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Now we can define what a stack is. The basic idea is that we want it
to be a “sheaf in groupoids.” What this ought to mean is that morphisms
between objects can be obtained by gluing them together from an open
cover, and like-wise for objects. Making this precise, of course, requires
effort.

We need to assume that C has finite limits.

Definition A.12. Let C be a category with a Grothendieck topology. A
stack over C is a category fibered in groupoids X over C such that

(1) (Descent for morphisms) Given an object U ∈C and objects x, y ∈
XU , the functor

C o p
/U → Set; (ϕ : V →U ) 7→ homXV

(ϕ∗x,ϕ∗y)

is a sheaf of sets,
(2) (Descent for objects) Given any cover {Ui →U } of U in the Grothendieck

topology, objects xi ∈XUi
and isomorphisms

τi j : xi |Ui ×U Uj → x j |Ui ×U Uj

which satisfy the cocycle condition, then there is an object x ∈XU
and isomorphisms fi : x|Ui → xi such that f j |Ui ×U Uj = τi j ◦
fi |Ui ×U Uj .

Example A.13. LetC = Top with the usual topology and let X= PrincG
be the category whose objects are principal G-bundles P → X over any
base space X and with the obvious morphisms. This defines a stack over
Top. Analogous examples can be replaced whenC = Schk the category of
k-schemes and X is the category of vector bundles on schemes, or quasi-
coherent sheaves on schemes, etc. In the case of algebraic geometry, there
are many different topologies to choose from, such as the f pqc , f p p f ,
étale, Nisnevich, Zariski, etc.

Remark A.14. While I have phrased the above definition in a very general
fashion, for us we will always takeC to be Aff, and we do so from this point
onward. For concreteness we also endow Aff with the fpqc topology.

Example A.15. An important example for us is M f g → Aff. In this case
M f g is the category whose objects are pairs (Spec(R),G)where G is a for-
mal group over Spec(R). A morphism of pairs is

( f ,ϕ) : (Spec(R),G)→ (Spec(T ),G′)

where f : T → R is a map of rings and ϕ : G→ f ∗G′ is a (strict) isomor-
phism of formal groups.
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Now, keep in mind that the category of categories fibered in groupoids
over a fixed base category C is a 2-category:

Objects Objects are categories a : X→C fibered in groupoids,
1-morphisms 1-morphisms are functors F : X → Y which make the following

diagram commute:

X Y

C

F

2-morphisms natural isomorphisms between functors

Definition A.16. A 1-morphism f : X→Y of stacks is representable if for
any scheme U with a 1-morphism X →Y, the fibre product X×Y X is a
scheme.

Remark A.17. In the literature, people often ask instead that the fibre
product X×Y X is an algebraic space.

In general, if P is some property of schemes (or algebraic spaces) and
f : X→Y is a representable 1-morphism of stacks, then we say that f has
property P if whenever, U is a scheme and U →Y is a 1-morphism, then
the map

X×Y U →U

is a morphism of schemes with property P . Note that in order for the
fibre product X×Y U to be a scheme we need to assume that f : X→Y is
a representable morphism.

Definition A.18 (cf. [7, 13]). A stack X → Aff is algebraic if the diago-
nal 1-morphism X→ X×X is a representable morphism and there is an
affine scheme U and a faithfully flat 1-morphism P : U → X. We call P a
presentation of X.

Remark A.19. Recall that a morphism is faithfully flat if and only if it is
flat and surjective.

Remark A.20 (cf. [14]). The condition that the diagonal 1-morphism is
representable implies that for any scheme X and morphism f : X → X
is representable. Indeed, suppose that u : U → X is a morphism from a
scheme U into X. Then the fibre product U ×u,X,t T is also given as the
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pull-back of the following diagram

U ×T

X X×X

u×t

∆

.

This is what allows us to even ask that the morphism P is faithfully flat.

Remark A.21. The definition of an algebraic stack above is the one ho-
motopy theorists tend to use. It is different from what is common in the
algebraic geometry literature. The algebraic geometers tend to ask that P
is a smooth surjective morphism. Asking that P is a smooth map implies
that it is flat and locally of finite type. In homotopy theory, however, the
main example is P : Spec(L)→M f g , but this is not locally of finite type,
and hence not smooth. This can be seen as follows. We have the fibre
product

Spec(L)×M f g
Spec(L) Spec(L)

Spec(L) M f g

P

P

and the fibre product is Spec(LT ). Clearly, Spec(LT ) → Spec(L) is not
locally of finite type since LT is not a finitely generated L-algebra.

Definition A.22. A rigidified algebraic stack is a pair (X, P : U →X)where
X is an algebraic stack such that the diagonal is affine and P is a presentation
of X.

Remark A.23. That the diagonal is affine is part of the definition of an
algebraic stack in [13], but this is not required in other places in the liter-
ature.

A.2. Flat Hopf algebroids and stacks. Suppose that (A,Γ ) is a flat Hopf
algebroid. Then, the pair of functors

(Spec(A), Spec(Γ )) : Affo p → Grpd

determines a functor into groupoids. It is also convenient to think of
(Spec(A), Spec(Γ )) as a groupoid itself by regarding Spec(A) as the affine
scheme of objects and Spec(Γ ) as the affine scheme of morphisms.

Now suppose that (B ,Φ) is another flat Hopf algebroid. Then a functor
of groupoids

F : Spec(A), Spec(Γ )→ Spec(B), Spec(Φ)
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corresponds, by Yoneda, to a morphism

f0 : B→A

and
f1 : Φ→ Γ

such that the obvious diagrams commute. For example, the fact that a
functor commutes with composition implies the following diagram com-
mutes

Φ Γ

Φ⊗B Φ Γ ⊗A Γ .

g

∆ ∆

Exercise 24. Figure out all of the necessary commutative diagrams.

However, the category of groupoids is actually a 2-category. So the
category of flat Hopf algebroids ought to be a 2-category as well. The
2-morphisms should correspond to natural transformations of functors.
Suppose that

F ,G : (Spec(A), Spec(Γ ))→ (Spec(B), Spec(Φ))

are functors between groupoids. Then a natural transformation η : F →G
is given by a morphism of affine schemes

η : Spec(A)→ Spec(Φ),

which picks out for every object x a morphism ηx : F x→Gx. By Yoneda,
this is just a map c : Φ→A.

This latter part suggests further conditions on η. Namely, we ought to
have thatηLη= f0 and ηRη= g0. Moreover, being a natural transformation
requires that certain diagrams commute. This can be expressed in terms
of these affine schemes that the following diagram

Spec(Γ ) Spec(Φ)×s ,Spec(B),t Spec(Φ)

Spec(Φ)×s ,Spec(B),t Spec(Φ) Spec(Φ)

(g1 ηs)

(ηt f1) ∆

∆

Clearly, if η : F → G and η′ : G→ H are two natural transformations,
then we can compose them componentwise. On schemes, the composite
η′ ◦η is given by

η′ ◦η : Spec(A) Spec(Φ)×Spec(B) Spec(Φ) Spec(Φ).
(η′ η) ∆
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We can now describe a functor from rigidified algebraic stacks and flat
Hopf algebroids.

Definition A.24. Let RigStack denote the 2-category of rigidified alge-
braic stacks and let HopfAlgd[ denote the category of flat Hopf algebroids.

We can define a functor

K : RigStack→HopfAlgd[

as follows. Let (X, P : X0→X) be a rigidfied algebraic stack. Then we can
form the fibre product X1 :=X0×P,X,P X0. We require that X0 is affine, and
this implies that the fibre product X1 is also affine. Furthermore, it is clear
that (X0,X1) naturally has the structure of a groupoid.

There are maps
s , t : X1→X0

coming from projecting onto the first or second factor, and there is a map

χ : X1→X1

arising from switching the factors. Since the presentation P is faithfully
flat, it follows that the maps s , t are flat maps of affine schemes. In other
words, (X0,X1) is a flat Hopf algebroid. Thus K is really a functor into flat
Hopf algebroids.

Exercise 25. Examine how K behaves on 1-morphisms and 2-morphisms
and show that K is in fact a 2-functor RigStack→HopfAlgd[.

There is a two functor going in the opposite direction,

G : HopfAlgd[→ RigStack,

but it is a bit more complicated to write down.
First, suppose that (X0,X1) is a flat Hopf algebroid (we think of X0 and

X1 as affine schemes). Then we can define a stackX associated with (X0,X1)
as follows. First, recall that we can consider this pair as a functor

(X0,X1) : Affo p → Grpd,

we can apply the Grothendieck construction to get a category fibered in
groupoids over Aff, call this category eX(X0,X1)

. This may not be a stack,
but we can “stackify” it. This is the stack M(X0,X1)

with a canonical map
eX(X0,X1)

→M(X0,X1)
which has the property that a map

eX(X0,X1)
→Y

of categories fibered in groupoids over Aff with Y a stack uniquely factors
through M(X0,X1)

. By construction this stack will be an algebraic stack and
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its diagonal will be affine. It also receives a map from X0, P : X0→M(X0,X1)
.

This map turns out to be representable and faithfully flat since s , t : X1→
X0 are faithfully flat.

A.3. Quasi-coherent sheaves and comodules.

A.4. Cohomology and Ext.
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