MATH 402 Worksheet 7

Friday 4/6/18

Exercise 1. Recall two circles are called orthogonal circles if their tangent lines at their points of intersection are orthogonal to each other. Recall that a point A not on a circle Γ (with center O) has an inverse. This is the point A^{\prime} on the ray $\overrightarrow{O A}$ such that $O A \cdot O A^{\prime}=r^{2}$, where r is the radius of Γ. Since the relation is symmetric in A and A^{\prime}, note that A is the inverse of A^{\prime}.
(1) Let A be a point in the interior of the circle Γ. Let $P Q$ be the chord which intersects the line $\overleftrightarrow{O A}$ at A at right angles. Let ℓ and m be the tangent lines to Γ passing through P and Q respectively. Let A^{\prime} be the point of intersection. Show that A and A^{\prime} are inverses with respect to Γ. (Hint: Use similar triangles.)
(2) Let A and A^{\prime} be points which are inverse with respect to Γ. Suppose Δ is a circle which passes through A and A^{\prime}. Show that Δ and Γ intersect at right angles.
(3) Show that, given any two points P And Q in the interior of a circle Γ, there is a unique circle Δ which passes through P and Q which is orthogonal to Γ.
(4) Explain how this shows that in the Poincaré disc, any two points are connected by a unique hyperbolic line.

Exercise 2.

(1) Consider the Poincaré disc. Let ℓ be a hyperbolic line, and let P be a point not on the line. Show that there is a unique hyperbolic line m passing through P which intersects ℓ at the boundary.
(2) Consider the line you constructed in the last part. Show that if Q is a point on ℓ and R is some point on m which is different from P, then there is no hyperbolic line k in the interior of $\angle A P Q$ which is parallel to ℓ.

