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1. INTRODUCTION

These notes are growing out of my desire to completely relearn the foun-
dations of stable homotopy theory, and I have decided to make them pub-
lic for the class. I will try to update them periodically. I claim no original-
ity in this material, except possibly the mistakes.

Disclaimer: At the moment, these notes are extremely unorganized and
are subject to change on a nearly daily basis. Use with caution.

2. WHAT IS THE STABLE HOMOTOPY CATEGORY SUPPOSED TO BE?

Suppose we have two finite pointed CW complexes X and Y , and sup-
pose we have pointed maps f , g : Σr X → Y . How can we tell whether
or not f and g are homotopic or not? One way is to find a cohomology
theory E∗ which sees the difference between f and g : that is, we want
E ∗( f ) 6= E∗(g ). If we can find such an E , then we can distinguish between
f and g .

But this begs the question, have we really distinguished between the ho-
motopy classes of f and g ? Well, not quite. As we have discussed in class,
(co)homology theories are stable under suspension, which means any sus-
pension of f and g will have the same effect in cohomology. However,
the following scenario could occur. It may happen that f , g : Σr X → Y
are not homotopic, but are stably homotopic, that is, there is some `� 0
such that Σ` f and Σ` g are homotopic. If this is the case then E∗ cannot
tell the difference between f and g , despite the fact that f and g are not
homotopic. What E∗ can distinguish are between stable homotopy classes
of maps.

Example 2.1. Consider the fibration

S1→ S3→ S2



WHAT ARE SPECTRA? 3

arising out of the usual definition of CP 1. Then we get a long exact se-
quence in homotopy, which yields π3S2 = Z{η}, where η is the so-called
first Hopf invariant one element. In particular, 2η is not nullhomotopic.
However, it is known that 2Ση is null homotopic. So 2η is not null homo-
topic but it is stably nullhomotopic.

Thus, if we are to try to understand the category of spaces through the
eyes of cohomology theories, it is natural to find a category which incor-
porates all of the identifications and properties seen by all cohomology
theories. That is, we want a category SHC such that for any cohomology
theory E , we have the following factorization

hoTop∗ A

SHC

eE∗

Σ∞ ∃!

where A is any kind of suitable category (probably pointed and additive).
We call this desired category SHC the stable homotopy category. I have sug-
gestively written down some sort of functor

Σ∞ : hoTop∗→ SHC,

we should think of this functor as taking a space X to its “universal stable
invariant”Σ∞X . That is, any sort of stable invariant we can extract out of
X is really just the same as an invariant of Σ∞X . The following prospect
then presents itself: to study stable invariants of X , its best to study the
topology of the objectΣ∞X . Properties of stable invariants of X will then
be consequences of the properties of Σ∞X .

Now there are many properties we might expect the category SHC to
have. For one, we would like there to be a right adjoint to the functorΣ∞:

Σ∞ : hoTop∗ : SHC.
Σ∞

Ω∞

Furthermore, we want SHC to capture stable homotopy theory. Since the
suspension functor is seen as an invertible operation in (co)homology the-
ories, this suggests that we want
• The category SHC to have a suspension functor Σ : SHC → SHC

which is compatible with the usual suspension on pointed spaces,
i.e. the following diagram commutes

hoTop∗ hoTop∗

SHC SHC

Σ

Σ∞ Σ∞

Σ∞
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• Since (co)homology theories see Σ as an invertible operation, we
want Σ : SHC→ SHC to be an equivalence of of SHC.

Furthermore, we found in hoTop∗ that fibre and cofibre sequences were
very useful tools, we want an analogue of sequences in spectra. Moreover,
we want to have cofibre sequences mapped to cofibre sequences underΣ∞.

Also, we want for based spaces X and Y the following formula

[Σ∞X ,Σ∞Y ]∼= colim
k→∞

[ΣkX ,ΣkY ]

In particular, we must have that the hom sets in SHC between suspen-
sion spectra are abelian groups. We want this to be true for any hom set
between any two spectra. Thus, we want SHC to be enriched in abelian
groups. This will have two very interesting consequences:
• The category SHC has products and coproducts given by × and ∨

respectively. Namely, for X and Y spectra, we have an equivalence
X ∨Y →X ×Y .
• If f : A→X is a map of spectra and r : X →A is a retract of f , i.e.

r f = 1, then there is a splitting X =A∨ΩC i .
Neither of these two things happened in spaces. These properties hold

true for any pointed additive category.
Finally, we really want there to be a functor ∧ on SHC which makes

this into a symmetric monoidal category. We also want a functor F (−,−)
which makes SHC into a closed symmetric monoidal category, i.e. so that

[X ∧Y,Z]∼= [X , F (Y,Z)].

I should also mention, we want SHC to be the homotopy category of some
category. This category is often called Sp for the category of spectra. We
would like this category to have the following properties: For a space X
let

QX := colim
�

X →ΩΣX →Ω2Σ2X → ·· ·
�

where X → ΩΣX is the unit of the adjunction Σ a Ω. We want the cate-
gory Sp to have functors

Σ∞ : Top∗→ Sp
and

Ω∞ : Sp→ Top∗
We want these to satisfy

A1 The category Sp is symmetric monoidal with respect to the smash
product of spectra,

A2 The functor Σ∞ is left adjoint to the functor Ω∞,
A3 The unit for the smash product is Σ∞S0,
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A4 Either there is a natural transformation

ϕ :Ω∞D ∧Ω∞E →Ω∞(D ∧ E)

or
ψ :Σ∞(X ∧Y )→Σ∞X ∧Σ∞Y

which commute with the monoidal structures. (i.e. they are lax
monoidal functors. )

A5 There is a natural weak equivalence

ϑ :Ω∞Σ∞X →QX

for X ∈ Top∗ which makes the following diagram commute

X Ω∞Σ∞X

QX

η

ι
ϑ

Theorem 2.2 (Lewis). There is no such category of spectra satisfying (A1)-(A5).

3. THE ADAMS-BOARDMANN CATEGORY

In this section, we present what is probably the most classical category
of spectra. This is the category of spectra which can be found in Adams’
Blue book or in Switzer.

3.1. The category. Let’s first define the category, which is to say, the ob-
jects and the morphisms. Along the way, we will also define what its ho-
motopy category is.

Definition 3.1. A CW-spectrum E is a sequence of CW complexes E =
{En}n∈Z along with inclusions ΣEn → En+1 which exhibits ΣEn as a sub-
complex of En+1.

We can define the homotopy groups of a CW spectrum.

Definition 3.2. Let r ∈Z, define

πr E = colim
n

πn+r (En).

Here the colimit is over the diagram where the mapπn+r En→πn+r+1En+1
is

πn+r En πn+r+1(ΣEn) πn+r+1(En+1).
Σ

Remark 3.3. Of course, we only start the diagram when n+ r ≥ 0. Thus
if r < 0, we require that n ≥−r .
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Example 3.4. If E is a spectrum, then π−1E is the colimit of

π0(E1)→π1E2→π2(E3)→ ·· ·

Definition 3.5. Let f : E → F be a function of spectra. We call f a stable
equivalence if π∗ f :π∗E →π∗F is an isomorphism on homotopy groups.

In classical topology, CW complexes have cells, we want to say that CW-
spectra also have cells. Suppose that e d

n is a d -dimensional cell of the com-
plex En. Then suspending embeds ΣEn in En+1 as a subcomplex. So, we
see that Σe d

n is a (d +1)-dimensional cell in En+1. Inductively, we find that
Σk e d

n is a (d + k)-dimensional cell in En+k . Now, it may happen that the
cell e d

n actually originated at some previous stage. That is to say, there is
cell e d ′

n′ in En′ which suspends to e d
n . For this to be the case, we would have

to have
Σd−d ′e d ′

n′ = e d
n .

In this case, we would have n = n′ + d − d ′, and hence n′ = n + d ′ − d .
Since d−d ′ ≥ 0, the cell e d

n cannot be “desuspended” infinitely many times.
Rather, it can only be desuspended at most d−d ′many times, and so there
is a first cell which gives rise to e d

n (of course it might happen that e d
n is the

first). We call the collection

e = {e d ′
n′ ,Σe d ′

n′ , . . .}

a stable cell of dimension d − n of the CW spectrum E . We say a spectrum
is finite if there are only finitely many stable cells.

Exercise 1. Show that E is a CW spectrum with only finitely many stable
cells if and only if there is an integer N such that EN is a finite complex and
for all n ≥N we have En =Σ

n−N EN .

Remark 3.6. Here is how we got the dimension. Observe that for any of
the cells in the collection e , the difference between the dimension of the
cells and the space they appear in the spectrum is d −n, which is constant
for each element of the family.

Remark 3.7. Later, we will talk about desuspensions, and we will see that
a spectrum E can be written as a colimit

E = colim
n
Σ−nEn,

this coincides with how we got stable dimensions earlier.

Here is a very important collection of examples of CW spectra.
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Definition 3.8. Let X be a CW-complex. Define Σ∞X to be the CW-
spectrum defined by

(Σ∞X )n :=ΣnX
and morphisms

ΣΣnX →Σn+1X
the identity map.

Exercise 2. Show that for n ≥ 0 we have πn(Σ
∞X ) = πs t

n (X ). Show that
for n < 0, one has πnΣ

∞X = 0.

Of course, we want a category of spectra, and so we ought to define
what morphisms are. The most obvious definition is

Definition 3.9. A function f : E → F between CW -spectra is a sequence
of cellular maps fn : En→ Fn so that the following diagram commutes

ΣEn En+1

ΣFn Fn+1

Σ fn fn+1

Exercise 3. Show that a function f : E → F between spectra induces a
map on homotopy groups.

Definition 3.10. A function which induces an isomorphism on homo-
topy groups is called a stable equivalence.

There is another notion of equivalence that one may have come up with.

Definition 3.11. A levelwise equivalence is a function f : E → F between
spectra so that each component fn : En→ Fn is a weak equivalence.

Exercise 4. Show that levelwise equivalences induce isomorphisms on ho-
motopy groups, and so are stable equivalences.

For various reasons, functions are not sufficient for our purposes.

Exercise 5. Show that for CW complexes X and Y , the functions f :
Σ∞X → Σ∞Y are in one-to-one correspondence with the set of cellular
maps X → Y .

This exercise shows that the notion of a function is really no good. In-
deed, consider the first Hopf invariant one element η : S3→ S2. This de-
termines an element in πs t

1 (S
0). We would like this element to correspond

to a morphism η : Σ∞S1→ Σ∞S0 in our category. However, by the pre-
vious exercise, if this were a funtion, then it is uniquely determined by a
map S1 → S0. But there are no maps S1 → S0 or S2 → S1 which suspend
to η. Here is another example,
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Example 3.12. Take the two spectra E and F with

En =
∨

k≥1

Sn+4k−1

and
Fn = Sn.

We would like to have a function E → F whose component from Sn+4k−1

picks up the generator of the stable image of J in stem 4k − 1. However,
there is no single value of n for which all the required maps exist.

This example shows that we really must come up with a different notion
of morphism in our category.

Definition 3.13. Let E be a CW spectrum. A subspectrum of E is a se-
quence of subcomplexes Fn ⊆ En so that ΣFn is a subcomplex of Fn+1. We
say that F is cofinal if every cell of E contains an element which is a cell of
some Fn.

Remark 3.14. Note that if X is a CW spectrum and A is a subspectrum,
then we can define the relative homotopy groups π∗(X ,A). Indeed, they
are are just given as the colimit

πr (X ,A) = colim
n

πn+r (Xn,An).

The long exact sequence of a pair in homotopy (and taking a colimit) gives
a long exact sequence

· · · →πr A→πr X →πr (X ,A)→πr−1(A)→ ·· · .
for pairs of spectra.

Definition 3.15. A filtration of CW spectrum E is an increasing sequence
of CW spectra {E n | n ∈Z} whose union is all of E .

Example 3.16. Let E (n) denote the subspectrum which is the union of all
cells of dimension less than or equal to n. In particular E (n)m ⊆ Em is the
(n+m)-skeleton of Em. This is known as skeletal filtration. Unlike in the
category of spaces, a spectrum E can have have cells in arbitrarily negative
dimension. This makes the skeletal filtration useless for doing inductive
arguments, in stark contrast to the category of spaces.

Here is a more convenient description of a cofinal subspectrum.

Proposition 3.17. Let E be a CW spectrum. Then a subspectrum F is a
cofinal if and only if for every n and finite subcomplex K ⊆ En , there is a d
such that Σd K ⊆ Fn+d .

Cofinal subspectra have nice closure properties.
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Proposition 3.18. The intersection of two cofinal subspectra is cofinal. Fur-
thermore, if G ⊆ F ⊆ E such that F is cofinal in E and G is cofinal in F then
G is cofinal in E. Arbitrary unions of cofinal subspectra are cofinal.

Definition 3.19. Let E and F be CW spectra. Consider the set of all pairs
(E ′, f ) where E ′ ⊆ E is a cofinal subspectrum and f : E ′→ F is a function
of CW spectra. Define an equivalence relation on this set by regarding
(E ′, f ′) equivalent to (E ′′, f ′′) if there is a cofinal subspectrum E ′′′ ⊆ E ′∩E ′′
such that f ′|E ′′′ = f ′′|E ′′′ . A map E → F is defined to be an equivalence class
of such pairs.

What is this intuitively saying. Well, its saying that if you have a cell e
in the spectrum E , then a map will not necessarily be defined on the cell
e , but it will be defined on some suspension of e . The slogan we get from
Adams is “cells now, maps later.”

We would like to define composition on maps, so that we get a category.
The problem is that if we have a representative (E ′, f ′) and (F ′, g ′)we may
not be able to compose g ′ and f ′, since it may not happen that f ′(E ′)⊆ F ′.
We need a lemma.

Lemma 3.20. Let f : E → F be a function of CW spectra, and let F ′ ⊆ F be
a cofinal subspectrum. Then there is a cofinal subspectrum E ′ ⊆ E such that
f (E ′)⊆ F ′.

Proof. Consider the collection of all subspectra G such that f (G) ⊆ F ′.
This collection is nonempty because it contains the basepoint. Let E ′ be
the union of these subspectra. Then f (E ′) ⊆ F ′. It remains to show that
E ′ is a cofinal subspectrum. Let K be a finite complex in En. Consider
fn(K), this is contained in a finite subcomplex H ⊆ Fn. This is because
fn is cellular. As F ′ is cofinal, there is a d such that Σd H ⊆ F ′n+d . Thus
fn+d (Σ

d K)⊆ F ′n+d . So Σd K ⊆ E ′n+d . �

This allows us to compose maps. Indeed, suppose we have a map (E ′, f ′) :
E → F and a map (F ′, g ′) : F →G. Then, by the lemma, there is a cofinal
subspectrum E ′′ such that f ′(E ′′)⊆ F ′. So we can define the composite to
be the pair (E ′′, g ′ ◦ f ′|E ′′).
Exercise 6. Show that the composite is well defined.

This gives us a category, which we will call CW Sp. This is the category
of CW spectra.

Exercise 7. Show that the inclusion of a cofinal subspectrum is an isomor-
phism in this category.

Exercise 8. Show that for a CW spectrum E , and a cofinal subspectrum
F , there is a one-to-one correspondence between their stable cells.
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Exercise 9. We have defined π∗ as a functor on spectra where the mor-
phisms are functions. We obviously want this definition to descend to
maps. Show that if f : E → F is a map of CW spectra, then we get a
well-defined morphism π∗( f ) on homotopy groups.

Remember, we are trying to concoct the stable homotopy category. We
would like to say that SH C = hoSp, but we need to have a notion of
homotopy to do that.

Definition 3.21. Let K be a CW complex and let E be a CW spectrum.
Define K ∧ E to be a the CW spectrum (K ∧ E)n = K ∧ En, where the
structure maps are the obvious inclusions.

This actually defines a functor

CWcx×CW Sp→CW Sp.

The term one sometimes uses is that CW Sp is tensored in CW complexes.
Whenever you have such a structure, you automatically get a concept of
homotopy. In particular, let I denote the unit interval.

Definition 3.22. Let f , g : E → F be maps. Then a homotopy from f to g
is a map h : E ∧ I+→ F so that the following diagram commutes

E ∧{0}+ E ∧ I+ E ∧{1}+

F
f

h
g

This gives an equivalence relation on the set of maps from E to F . We
denote the quotient set by [E , F ]. We call this set the set of homotopy
classes of maps from E to F . We are now in a position to define the stable
homotopy category.

Definition 3.23. The stable homotopy category, denoted SHC is the cate-
gory whose objects are the same as those of CW Sp and whose morphisms
are the homotopy classes of maps. That is SHC(E , F ) := [E , F ] for CW
spectra E and F .

Remark 3.24. There is an easy way to put a grading on the morphisms in
both CW Sp and in SHC. Let r ∈Z and define f : E → F to be a function
of degree r if it is given by continuous maps fn : En→ Fn−r which commute
with the structure maps. This clearly generalizes to the concept of maps
of degree r. We can then define Sp(E , F )r to be the set of degree r maps.
Finally, we can consider the homotopy relation on Sp(E , F )r , which gives
[E , F ]r the homotopy classes of maps of degree r .
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We really ought to give some examples of objects in this category. At
this point, we can define an important functor. Consider the functor

Σ∞ : CW c x→ SHC.

This is defined as follows: let X be a CW complex. Define Σ∞X to be the
spectrum with (Σ∞X )n := ΣnX , with the obvious structure maps. This
defines a functor. By abuse of notation, topologists typically use Sn to
denote Σ∞Sn. In fact, this even defines a functor

Σ∞ : CW c x→CW Sp.

Exercise 10. Show that K ∧Σ∞L∼=Σ∞(K ∧ L).

Now remember that one of things we wanted SHC to do was to capture
stable invariants, and in particular, we wanted our functorΣ∞ to somehow
be the “universal stable invariant.” To justify our category then, we wish
to have the following

Proposition 3.25. Let F be a CW spectrum, and K a finite complex. Then

[Σ∞K , F ]r ∼= colim
n→∞

[Σn+r K , Fn].

Here, the colimit on the right is over the tower where the morphisms [Σn+r K , Fn]→
[Σn+r+1K , Fn+1] is the composite

[Σn+r K , Fn]
�

Σn+r+1K ,ΣFn

� �

Σn+r+1K , Fn+1

�

.Σ

In particular, we have for

[Σ∞S0, F ]n =πnF .

double check
whether or not
n or −n.

double check
whether or not
n or −n.

Proof. Clearly, for any n, there is a map

[Σn+r K , Fn]→ [Σ
∞K , F ]r .

This map is defined by taking a map f :Σn+kK→ Fn and then noting that
this uniquely determines a map of spectra Σ∞K → F of degree r . This
is because once we have f , the higher components are forced. Clearly if
f , g : Σn+kK → Fn are homotopic as maps of spaces, then they become
homotopic as maps of spectra. We need to check first that these maps
determine a map from the colimit to [Σ∞K , F ]r .

Suppose that two maps f : Σn+r K → Fn and g : Σm+r K → Fm become
identified in the colimit. This means that, while f and g may not be ho-
motopic, they are homotopic after some number of suspensions. So there
is an ` sufficiently large so that there is a homotopy

h` :Σ`+r K ∧ I+→Σ
`Fn
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which is a homotopy between Σ`−n f and Σ`−m g . This yields a map

h` :Σ`+r K ∧ I+→ Fn+`.

Once we have h`, this uniquely determines a map of spectra

h :Σ∞K ∧ I+→ F

of degree r . It is clear that this is a homotopy from the map of spectra f to
the map of spectra g . This implies that there is a unique morphism

ϑ : colim
n→∞

[Σn+r K , Fn]→ [Σ
∞K , F ].

To show that this is a bijection, let f :Σ∞K → F be some map of spec-
tra. Now, f may be defined on some cofinal subspectrum E . But, since K is
a finite complex1, there is an N such that En =Σ

nK for n ≥N . In particu-
lar, f is then uniquely determined by the component fN+r :ΣN+r K→ FN .
This shows that f is in the image of the [ΣN+r K , FN ], and hence of the
colimit. We leave injectivity as an exercise for the reader. �

Corollary 3.26. Let X be a CW complex, then π∗(Σ
∞X )∼=πs

∗(X ).

Remark 3.27. The functor

Σ∞ : hoTop∗→ SHC
is not an embedding. In fact the map

[X ,Y ]∗→ [Σ
∞X ,Σ∞Y ]∗

need note be injective (As we have seen), nor surjective (e.g. Kahn-Priddy
map).

I want to say a few more words about this concept of degree. Now, there
is an endofunctor

[1] : Sp→ Sp
which is defined by

(X [1])n :=Xn+1,
with the obvious structure maps. This obviously induces a functor CW Sp
and on SHC. This is the shift functor. We also have an endofunctor by
shifting in the opposite direction. Namely, there is the functor

[−1] : Sp→ Sp
defined by

(X [−1])n =Xn−1.

Exercise 11. Let X be a spectrum. Show that πn(X [1]) = πn−1X . Like-
wise, show that πn(X [−1]) =πn−1X .

1This is the first point we are using that K is a finite complex.
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Clearly, composing these functors any number of times allows us to de-
fine functors

[n] : Sp→ Sp
defined by

(X [n])k =Xk−n.

Remark 3.28. A function f : X → Y of degree r is nothing more than
a function f : X [r ] → Y , or equivalently, a function f : X → Y [−r ].
What this shows is that we have an adjunction

Sp(X [1],Y )∼= Sp(X ,Y [−1]).

This clearly induces a corresponding adjunction in CW Sp.

Remark 3.29. We obviously have the following identities

X =X [1][−1] =X [−1][1].

Recall that we want some sort of “suspension” functor on SHC which is
compatible with the suspension functor on Top∗. In light of the isomor-
phism

πn(X [1])∼=πn−1X ,

the functor [1] exhibits the correct sort of behavior. We can also show
that it is compatible with the suspension functor on spaces. Indeed, let
X ∈ Top∗, then the following shows the spaces in Σ∞X ,Σ∞X [1], and
Σ∞ΣX .

-2 -1 0 1 2
Σ∞X ∗ ∗ X ΣX Σ2X
Σ∞ΣX ∗ ∗ ΣX Σ2X Σ3X
Σ∞X [1] ∗ X ΣX Σ2X Σ3X

Now the spectra Σ∞ΣX and Σ∞X [1] are not equal, but, when X is a
CW complex, then we clearly have that Σ∞ΣX is a cofinal subspectrum
ofΣ∞X [1], and hence are naturally isomorphic. In this sense, the functor
[1] is compatible with Σ. So it seems that this functor gives us our desired
stability properties for spectra.

This however, is not quite right. We have shown that for finite com-
plexes K and L, we have

[Σ∞K ,Σ∞L]∼= colim
k→∞

[ΣkK ,Σk L].

This shows that there is a natural abelian group structure on [Σ∞K ,Σ∞L],
and furthermore, this structure is functorial on maps between finite com-
plexes. We want this to extend naturally to [X ,Y ] for all spectra X and
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Y . The functor [1] cannot do give us such a structure. A functor that can,
however, is

Σ : Sp→ Sp,X 7→ S1 ∧X .
This produces a map

[X ,Y ]→ [ΣX ,ΣY ]
for all spectra X and Y . The target of this map has a natural group struc-
ture. The argument is the same as we gave in spaces. If we can show that
the functor Σ is invertible, with inverse Σ−1, then we have

[X ,Y ]→ [ΣX ,ΣY ]→ [Σ2X ,Σ2Y ]

which are natural bijections, and so we get a natural abelian group struc-
ture on [X ,Y ].

Remark 3.30. One would think that there is a natural function ΣX →
X [1]. WE would like to think that the nth component ought to be

εn : S1 ∧Xn→Xn+1.

But this actually doesn’t work. We need to be slightly careful about how
we are defining the structure maps on S1 ∧X . It is defined by

ϕn : S1
σ ∧ S1 ∧Xn S1 ∧ S1

σ ∧Xn S1 ∧Xn+1.
τ∧Xn S1∧εn

Here I have written S1
σ to distinguish between the circle carrying the sus-

pension coordinate.
Now in order to have a function, we would need the following diagram

to commute

S1
σ ∧ (S1 ∧X )n S1

σ ∧Xn+1

S1 ∧Xn+1 Xn+2

S1
σ∧εn

ϕn εn+1

but this doesn’t actually commute. This is because of the transposition
morphism τ we used in defining ϕn. Now, what we can do, is slightly
alter the maps S1 ∧Xn→X [1]n. If we define maps

fn : S1 ∧Xn→X [1]n
by

fn = (−1)nεn,
then we still don’t get a commutative diagram, but we do get a homotopy
commutative diagram. This is because the map −1 : S1∧ S1→ S1∧ S1 and
τ : S1∧S1→ S1∧S1 are homotopic. Such things are called pseudo-functions.
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While we still haven’t obtained a function, the fact that the necessary
squares homotopy commute does give us a well defined morphism on ho-
motopy, so we get a natural homomorphism

π∗ f :π∗(ΣX )→π∗(X [1]).

Exercise 12. Show that this induced homomorphism is an isomorphism
on homotopy groups.

It turns out that there is no natural stable equivalence ΣX →X [1], but
the fact that there is an auxiliary spectrum X ′ with canonical maps X ′→
ΣX and X ′ → X [1], and these maps turn out to be stable equivalences.
We will come back to this later.

4. PROPERTIES OF CW Sp AND SHC

4.1. Coproducts. I want to show that this category has all products and
coproducts.

Definition 4.1. Let {Eα}α∈A be some collection of CW -spectra. Define
∨

α

Eα

to be the CW spectrum whose nth term is
∨

α

Eα
n .

This makes sense since

S1 ∧
�

∨

α

Eα
n

�

=
∨

α

S1 ∧ Eα
n .

I want to show that CW Sp has coproducts.

Proposition 4.2. For any collection {Eα}α∈A of spectra, the inclusions iα :
Eα→
∨

α
Eα induce, for any spectrum F , bijections
∏

α

i ∗α : Sp(
∨

α

Eα, F )→
∏

α

Sp(Eα, F )

∏

α

i ∗α : [
∨

α

Eα, F ]→
∏

α

[Eα, F ].

Proof. I will only do this for two spectra. You can check the details in
greater generality for yourself. We need to show that this morphism is
both injective and surjective. To see that it is injective, suppose that f , g :
∨

Eα→ F are two maps of spectra with the property that they coincide on
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each component Eα. Let f be represented by (H ,ϕ) and g be represented
by (K ,ψ). Then we can write

Hn =H 1
n ∨H 2

n

where H i
n is a subcomplex of E i . Note that these define cofinal subspectra

H i of E i . Likewise we get cofinal subspectra G i of E i . The assumption
then becomes that there is a cofinal subspectrum K i of H i ∩G i such that
f |K i = g |K i . But then K = K1 ∨K2 is a cofinal subspectrum of E . Thus
f = g . The surjetivity follows easily from the definitions. This proves the
first statement.

To arrive at the second statement, just note that the bijection we have
just found preserves the relation of homotopy. This is left as an exercise.

�

4.2. Spectral Whitehead Theorem. Now I want to discuss the version
of the Whitehead Theorem for spectra. In particular, we will show that
a stable equivalence (i.e. a π∗-isomorphism) between CW spectra, is the
same as a homotopy equivalence. Towards this end, we are going to prove
a spectral version of HELP.

Lemma 4.3. Let E be a CW spectrum and G a subspectrum of E which is not
cofinal. Then E has a subspectrum F such that G ⊂ F ⊂ E and F contains
exactly one more stable cell than G.

Proof. As G is not cofinal, there is some stable cell e which does not belong
to G. It has a representative en which is contained in a finite complex
K ⊆ En. So there are finite subomplexes containing representatives for the
stable cell e . Among such K choose the one with the fewest cells. Then
K = L∪ e , where e is a top dimensional cell of K . Then L has fewer cells
than K and so all of its cells determine stable cells of G. So there is an
N such that ΣN L ⊆ Gn+N . Define F to be the subspectrum obtained by
adjoining the Σr e for r ≥ n+N . �

This allows us to make inductive arguments.

Lemma 4.4. (HELP, spectral version) Let (X ,A) be a pair of CW spectra, and
(Y,B) a pair for which π∗(Y,B) = 0. Suppose we are given a map f : X → Y
and a homotopy h : A∧ I+ → Y from f |A to a map g : A→ B. Then the
homotopy can be extended over X ∧ I+ so as to deform f to a map into B. In
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a diagram, this is expressed as

A A∧ I+ A

Y B

X X ∧ I+ X

ι

i n0

h

i n1

g

f

i n1

.

Proof. We work at the level of functions. Consider the collection of pairs
(U , k) where A⊆ U ⊆X , i.e. U is a subspectrum of X containing A, and
where k : U ∧ I+ → Y is a function so that k|U∧0+

= f |U and2 k|U∧1+
:

U → B .
Observe that this set is partially ordered in the obvious way: We declare

(U , k) < (V , j ) if U ⊆ V and j |U∧I+
= k. Observe further that this set

is clearly inductive: If {(Uλ, kλ)}λ∈Λ is a chain in this collection of pairs.
Then if we set U :=

⋃

λ
Uλ and k =
⋃

λ
kλ, then (U , k) is an element of

our collection. So by Zorn’s lemma, there is a maximal element (U ′, k ′).
We show that U ′ ⊆ X is a cofinal spectrum. Suppose this were not the

case. Then by the previous lemma, there is a subspectrum V such that
U ′ ⊆ V ⊆ X which has exactly one more cell than U ′. Let n be the
smallest integer where this new cell appears, i.e. Vn = Un ∪ e m and for
` < n we have V` =U`. Consider the map of pairs,

k ′n|∂ e m∧I+
: ∂ e m ∧ I+,∂ e m ∧ 1→ Yn,Bn.

This defines an element of πm(Yn,Bn). Since π∗(Y,B) = 0, if we suspend
enough times, this map becomes null. So let N � 0 so that on Vn+N =
Un+N ∪ e m+N , we have that the map

k ′n|∂ e m∧I+
: ∂ e m ∧ I+,∂ e m ∧ 1→ Yn+N ,Bn+N .

is null homotopic. A choice of null homotopy yields an extension of k ′n+N

k ′′n+N : Vn+N ∧ I+,Vn+N ∧ 1+→ Yn+N ,Bn+N .

We define k ′′n+p to be the suspension of this map for p >N . This produces
an extension of k ′ to a larger subspectrum, contradicting the assumption
that (U ′, k ′) was maximal. Thus U ′ is cofinal, and hence k ′ defines a map
X ∧ I+→ Y . By construction, k ′ does what we need it to. �

2This may be confusing since f is only a map. In this equality, we mean equality of
maps, i.e. that f |U and k|U∧0+

agree on a cofinal subspectrum.
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Remark 4.5. A trivial alteration of this proof shows that we can allow f , g
and h to be maps of degree r .

We will need the following slight generalization of HELP,

Lemma 4.6. (generalised HELP) Let (X ,A) be a pair of CW spectra, and
let ϕ : B → Y be a function of spectra which induces an isomorphism on
homotopy groups. Suppose we are given a map f : X → Y and a homotopy
h : A∧ I+ → Y from f |A to a map g : A→ B. Then the homotopy can be
extended over X ∧ I+ so as to deform f to a map into B. In a diagram, this is
expressed as

A A∧ I+ A

Y B

X X ∧ I+ X

ι

i n0

h

i n1

g

f

i n1

.

Proof. The proof is similar, but we consider the triples (U , k , g ′) where
g ′ : U → B such that ϕ g ′ = k ′i n1. �

Exercise 13. Show that if Y is a spectrum withπ∗Y = 0, then for any CW
pair (X ,A), any map f : A→ Y can be extended to X .

We can deduce in exactly the same way as for spaces the spectral version
of the Whitehead Theorem.

Theorem 4.7 (Whitehead Theorem, spectral version). Let f : E → F be a
stable equivalence between spectra. Then for any CW spectrum X , the induced
map

f∗ : [X , E]∗→ [X , F ]∗
is a bijection.

Proof. For surjectivity, use HELP for the CW pair (X ,∗). For injectivity
use HELP for the pair (X ∧ I+,X ∧ (∂ I )+). �

Corollary 4.8. If f : E → F is a map of CW spectra which is a stable equiv-
alence, then f is an isomorphism in SHC.

We want to show that SHC is really a stable category. That is, we want
to show that the suspension functor is invertible in this category. Towards
that end, we need a relative version of the Whitehead theorem.
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Theorem 4.9. Let f : (E ,A)→ (F ,B) be a function between pairs of spectra
which induces an isomorphism on relative homotopy groups. Then for any
CW spectrum X , the induced map

f∗ : [I ∧X ,X ; E ,A]∗→ [I ∧X ,X ; F ,B]∗
is a bijection.

Proof. Define a new spectrum R by

Rn := P (En,An),

the space of paths in En starting at the base point and ending somehwere
in An. We want this to come together to form a spectrum. Define the
structure maps ρn to be the composites

P (En,An) P (ΩEn+1,ΩAn+1)∼=ΩP (En+1,An+1).
Pε′n

Construct another spectrum T so that Tn := P (Fn,Bn) with the structure
maps defined in a similar way. Note that the funtion f : (E ,A)→ (F ,B)
induces a function f : R→ T . Since f induces an isomorphism on relative
homotopy groups, it follows that the function R→ T is a stable equiva-
lence. The Whitehead Theorem implies that

[X , R]→ [X ,T ]

is an isomorphism for all CW spectra X . Unwrapping the definitions, this
shows that

f∗ : [I ∧X ,X ; E ,A]→ [I ∧X ,X ; F ,B]
is an isomorphism. �

4.3. The suspension functor. Recall that in SHC we have defined ΣX :=
S1 ∧X . This is an endofunctor of SHC and so we get a map

Σ : [X ,Y ]∗→ [ΣX ,ΣY ]∗.

We wish to show that this natural map is a bijection.

Theorem 4.10. The natural map Σ : [X ,Y ]→ [ΣX ,ΣY ] is a bijection.

Proof. Observe that we have the following commutative diagram,

[X ,Y ] [I ∧X ,X ; I ∧Y,Y ]

[ΣX ,ΣY ] [I ∧X ,X ;ΣY, pt ]

Σ j Y
∗

j ∗X

Here the maps jX and jY are given by

jX : I ∧X ,X →ΣX , pt
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and

j Y : I ∧Y,Y →ΣY, pt .

The top horizontal arrow is injective, since restriction defines a right in-
verse. It is also surjective.

The bottom horizontal arrow is clearly a bijection. The right hand ver-
tical arrow is a bijection by the following colimit. ... �

So we conclude that the suspension functor defines a bijection. This
means that, as we have indicated above, we have that [X ,Y ] has a natural
abelian group structure. Moreover, this abelian group structure is com-
patible with composition, i.e. composition is bilinear: we have homo-
morphisms

◦ : [Y,Z]⊗Z [X ,Y ]→ [X ,Z].

Now, I want to conclude thatΣ is an invertible functor. SinceΣ is stably
equivalent to [1] by a zig-zag, we can conclude that on CW Sp that there
are homotopy equivalences ΣX →X [1], which gives us homotopy equiv-
alences ΣX [−1]→ X . So, in a sense, the inverse of Σ is just the functor
[−1]. The problem is that there is not a natural homotopy equivalence
relating them. We would like to have a more natural inverse.

I should have mentioned this earlier, but I suppose later is better than
never. Recall that we have a functor

Sp×Top∗→ Sp; E ,X 7→ E ∧X ,

where the structure maps are given by

εn ∧ S1 :Σ(E ∧X )n =Σ(En ∧X ) = S1 ∧ En ∧X → En+1 ∧X .

Note I have switched which side we are smashing on. We have another
functor

Top∗×Sp→ Sp;X , E 7→Map(X , E).

Here, we define

Map(X , E)n =Map∗(X , En).

We define the structure maps of this spectrum by

S1 ∧Map∗(X , En) Map∗(X , S1 ∧ En) Map∗(X , En+1).

Now it turns out that for a fixed space X , we have an adjunction −∧X a
Map(X ,−) between functors on spectra. This is because if we have a a
function fn : En ∧X → Fn, then the usual adjunction on spaces gives us
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maps f ′n : En → Map∗(X , Fn). Remember that adjunctions have natural
bijections between the hom-sets. This means that

S1 ∧ En ∧X En+1 ∧X

S1 ∧ Fn Fn+1

εn∧X

fn fn+1

ηn

commutes if and only if

S1 ∧ En En+1

S1 ∧Map(X , Fn) Map(X , Fn+1)

εn

fn fn+1

commutes. Thus we have defined an adjunction

Sp(E ∧X , F )∼= Sp(E ,Map(X , F )).

Keep in mind that Sp(E , F ) is actually a topological space, this adjunction
is actually a homeomorphism between spaces.

In the particular case that X = S1, then we define ΩF := Map(S1, F ).
Thus we get a natural homeomophism

Sp(ΣE , F )∼= Sp(E ,ΩF ).

Thus, as this is a homeomorphism, in the case when E And F are CW
spectra, we get an adjunction

[ΣE , F ]∼= [E ,ΩF ].

Now let’s return to the suspension functor. WE have shown that the
natural map

[X ,Y ]→ [ΣX ,ΣY ]
is a bijection. By the adjunction, we have that

[ΣX ,ΣY ]∼= [X ,ΩΣY ].

This results in the following commutative diagram

[X ,Y ] [ΣX ,ΣY ]

[X ,ΩΣY ]

∼=

(ηY )∗
∼=

where ηY : Y → ΩΣY is the unit of the adjunction. This implies that
Y → ΩΣY is a natural stable equivalence (for any general spectrum Y ).



22 D. CULVER

When Y is a CW spectrum, then ΩΣY is also a CW spectrum, and so by
Whitehead’s theorem this is a natural homotopy equivalence.Not quite,

ΩΣY has its
spaces CW
complexes, but
the structure
maps needn’t
be embeddings.
I need to fix
this.

Not quite,
ΩΣY has its
spaces CW
complexes, but
the structure
maps needn’t
be embeddings.
I need to fix
this.

4.4. (Co)fibre sequences. I want to define cofibre sequences now. Let
f : E → F be a map of spectra. Define the mapping cone of f , C f , to be
the CW spectrum given by

(C f )n := Fn ∪ f ′n
(E ′n ∧ I )

where (E ′, f ′) is a representative of f . If (E ′′, f ′′) is another representative
of f , then the CW spectrum Fn ∪ f ′′n

(E ′′n ∧ I ) shares a cofinal subspectrum
in common with the previous one, and so are equivalent in CW Sp. More-
over, if we f , g are homotopic maps, then the cofibres C f and C g are
homotopy equivalent, though this equivalence depends on the choice of
homotopy relating f and g .

Definition 4.11. Let X be a CW spectrum and A a subspectrum of X . We
say that A is closed if for any finite subcomplex K ⊆ Xn, if for N � 0 we
have ΣN K ⊆An+N , then K ⊆An.

In a simple English sentence, the subspectrum A is closed if whenever
a cell eventually finds its way into A, then it was in A to begin with. Put
another way, we have that A is closed in X if for any subspectrum B , if
A⊆ B ⊆X and A is cofinal in B , then A= B . We clearly have the following.

Proposition 4.12. Any subspectrum of a CW spectrum can be closed.

Exercise 14. Prove this. (Hint: Remember that cells desuspend only finitely
many times.)

Exercise 15. Show that if A⊆X is cofinal, then its closure is X .

Suppose now that i : X → Y is the inclusion of a closed subspectrum.
Then we can form the spectrum Y /X . This spectrum is defined by

(Y /X )n := Yn/Xn.

We need to check this defines a spectrum. This follows though, since by
virtue of X being closed, we have that

S1 ∧ (Yn/Xn)∼= (S
1 ∧Yn)/(S

1 ∧Xn)

and we then get a well defined map

S1 ∧ (Yn/Xn)→ Yn+1/Xn+1,

and it is trivial to check this is the inclusion of a subcomplex.
Moreover, if X ⊆ Y is a closed subspectrum, then we have a map

r : C i = Y ∪i C X → Y /X
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which is a levelwise equivalence. Thus r is a stable equivalence, and so a
homotopy equivalence by the Whitehead theorem.

Now suppose that f : X → Y is a map. Then we have morphisms

X Y C f = Y ∪ f C X .
f i

The following proposition follows in essentially the same way as for
spaces.

Proposition 4.13. For each Z, the sequence

[X ,Z] [Y,Z]
�

Y ∪ f C X ,Z
�

f ∗ i∗

Definition 4.14. A distinguished cofibre sequence is a sequence of mor-
phisms of the form

X Y C f = Y ∪ f C X .
f i

A cofibre sequence is a sequence of morphisms A→ B→C for which there
is a distinguished cofibre sequence X → Y → C f and a commutative dia-
gram

A B C

X Y C f

∼= ∼= ∼=

Just as in spaces, we can iteratively take cofibres to get a long cofibre
sequence,

X Y Y ∪ f C X (Y ∪ f C X )∪i C Y · · · .f i

Observe that Y is a closed subspectrum of Y ∪ f C X , and so we have a
natural stable equivalence

(Y ∪ f C X )∪i C Y → (Y ∪ f C X )∪i C Y /C Y =ΣX ,

just as in spaces. Thus we get

X Y C f ΣX ΣY · · · ,f i −Σ f

where each adjuacent pairs of maps is a cofibre sequence. Now, what is
amazing is that, in the stable homotopy category, cofibre sequences are
the same thing as fibre sequences.
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Proposition 4.15. For any spectrum W , the sequence

[W ,X ] [W ,Y ] [W ,C f ]
f∗ i∗

Proof. Suppose we have a map g : W → Y so that i g ' 0. Let h be a null
homotopy of this composite. This is precisely a map h : CW → C f . We
thus have the following diagram, where the horizontal parts are cofibre
sequences,

W W CW ΣW ΣW · · ·

X Y C f ΣX ΣY · · ·

i d

−Σ−1k g

i

h

−1

k Σg

f i −Σ f

Because these are cofibre sequences, we get the dashed arrow k making
the diagram commute for free, and the rest is automatic. But Σ has an
inverse in SHC. Applying Σ−1 gives us a map Σ−1k : W →X , making the
necessary diagram commute (functoriality of Σ−1). This proves exactness.

�

So fibre sequences also exist in SHC are are actually just cofibre sequences.
You should expect this, by the way. The stable homotopy groups π∗ cer-
tainly have long exact sequences associated to fibre sequences, since un-
stable homotopy groups have that property. But homotopy excision tells
us that the stable homotopy groups are actually a homology theory, and
homology theories have long exact sequences with respect to cofibre se-
quences. Furthremore, homotopy excision also told us that the canonical
map η : ΣF f → C f is a stable equivalence. So this is something we ex-
pected.

Anyway, in SHC, we have a cofibre sequence going off in both directions

· · · Σ−1X Σ−1Y Σ−1C f X Y C f ΣX ΣY · · · .

Proposition 4.16. Finite coproducts and finite products coincide in SHC.

Proof. Observe that the sequence

X →X ∨Y → Y

is a cofibre sequence since

X ∨Y /X = Y.

This gives us an exact sequence

[W ,X ]→ [W ,X ∨Y ]→ [W ,Y ]
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for any W . There is an obvious section to the second map coming from
the inclusion Y → X ∨ Y . As the sets [W ,X ], etc are actually abelian
groups, we get

[W ,X ∨Y ]∼= [W ,X ]⊕ [W ,Y ] = [W ,X ]× [W ,Y ]∼= [W ,X ×Y ].

The last isomorphism follows from the universal property of a the prod-
uct. So we have, by Yoneda, a canonical isomorphism

X ∨Y ∼=X ×Y.

�

4.5. The smash product and function spectra. This is the hardest piece
of structure to grapple with in the Adams-Boardmann category, and I won’t
talk about it it too much. This is really a very difficult thing to get at.

What we want is some sort of functor

∧ : Sp×Sp→ Sp
which makes the category of spectra Sp into a symmetric monoidal cate-
gory. Here is an obvious thing you would attempt. Let X and Y be spectra
which. Define a spectrum indexed on the coset 2Z by

(X ∧2Z Y )2n :=Xn ∧Yn.

There is an obvious functor

Sp2Z→ SpZ,

where if X is a spectrum indexed on 2Z, then we define eX to be the spec-
trum given by

eXn :=X2n.
This is clearly an equivalence of categories. So we get a functor

X ∧Y :=åX ∧2Z Y .

Remark 4.17. This does not define a symmetric monoidal structure on
Sp. In particular, we have that
• The suspension spectrum of S0 is not a monoidal unit,
• The smash product is not associative,
• the smash product is not commutative.

By the way, this is not necessarily the only think you would attempt.
You could more generally fix some functions n, m : Z → Z such that
n(p) + m(p) = p and n(p), m(p) →∞ as p →∞. We could then de-
fine a smash product by

Pp :=Xn(p) ∧Ym(p).
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Each gives rise to a so-called “handicrafted smash product.” They all fail to
make the category of spectra into a symmetric monoidal category. How-
ever, these issues all vanish upon passing to the homotopy category. Rather
than prove this (its rather tedious and difficult), let me just state the neces-
sary results.

Theorem 4.18. The naïve smash product on spectra defines a smash product

∧ : SHC×SHC→ SHC
so that for CW complexes X and Y there is a natural isomorphism

Σ∞X ∧Σ∞Y →Σ∞(X ∧Y ).

Moreover, the smash product ∧ defines a symmetric monoidal structure on
SHC with unit Σ∞S0. Moreover, any handi-crafted smash product gives rise
to this functor ∧ on SHC.

Proposition 4.19. Let {Xα}α∈A be a collection of CW spectra and let Z be a
CW spectrum. Then the natural morphism

∨

α

Xα ∧Z→
�

∨

α

Xα

�

∧Z

is an isomorphism in SHC.

Proof. Work at the level of spectra and pick your favorite handi-crafted
smash product. This is a level-wise equivalence, and hence a stable equiva-
lence. Since any handi-crafted smash product yields ∧ on SHC, this proves
the proposition. �

Proposition 4.20. If E is a spectrum and K is a space, then there is a canonical
isomorphism

K ∧ E ∼= (Σ∞K)∧ E .

Proposition 4.21. If

X Y Z
f i

is a cofibre sequence and W is a spectrum, then

W ∧X →W ∧Y →W ∧Z

is also a cofibre sequence.

Proof. It suffices to check the case when f : X → Y is an inclusion of
a closed subspectrum, i : Y → Z the canonical projection. Choose your
favorite handi-crafted smash product. This now follows from the usual fact
on spaces that taking cofibres and smashing with a space commute. �
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Once we get a symmetric monoidal structure, we also get a function
spectrum. This is a functor

F : SHCo p ×SHC→ SHC
and is denoted as F (X ,Y ), this is the function spectrum. Is defined so that
F (X ,−) is the right adjoint to −∧X , i.e.

[Y ∧X ,Z]∼= [Y, F (X ,Z)]

for all X ,Y,Z . This implies that

π∗F (X ,Y ) = [X ,Y ]∗.

So how do we prove the existence of such a spectrum F (X ,Y ). Well, we
could consider the functor

Spo p→ZAb;Y 7→ [Y ∧X ,Z].

This turns out to define a cohomology theory because − ∧ X preserves
cofibre sequences. Thus, by the Brown representability theory, this is rep-
resented by a spectrum F (X ,Z) in the stable homotopy category. Constant
and judicious use of the Yoneda lemma also shows that this defines a func-
tor

F : SHCo p ×SHC→ SHC.
The Brown representability theorem actually gives us natural isomorphisms

[Y ∧X ,Z]∼= [Y, F (X ,Z)]

so we actually have defined F so that it defines a right adjoint to ∧.

Exercise 16. Show that F preserves fibre sequences in either variable.

4.6. Cellularization. Now what we have done is construct SHC, but this
was taken to be ho(CW Sp). But we want to to be able to construct spectra
X and think of this as determining an object in SHC. So we need a functo-
rial way of assigning to each spectrum X , a CW spectrum X ′ and a stable
equivalence X ′ → X (or maybe the other way around). We take care of
this through something called the telescope construction.

Definition 4.22. Let E ∈ Sp be a spectrum with structure maps σk :
ΣEk→ Ek+1. Define a spectrum T e l (E) by defining

T e l (E)n := (En ∧ n+)∧
�

∨

k<n

Σn−k Ek ∧ [k , k + 1]+

�

/∼

where ∼ is the equivalence relation defined by

(e , k + 1)∼ (σk e , k + 1)
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where e ∈ΣEk . The structure maps

ΣT e l (E)n→ T e l (E)n+1

are given by the obvious inclusion.

Remark 4.23. We have given T e l (E)n the weak topology. Also, it is clear
from the construction that the structure maps are cofibrations. Indeed
there is an obvious homeomorphism

T e l (E)n+1 = T e l (E)n ∪ΣEn
Mσn

.

Proposition 4.24. The projection maps qn : T e l (E)n → En define a func-
tion of spectra. Moreover, the inclusions in : En → T e l (E)n don’t define a
function of spectra, but they are homotopy inverses to qn . This shows that
q : T e l (E) → E is a levelwise equivalence, and hence a stable equivalence.
Also, this construction defines a functor.

Corollary 4.25. The function q : T e l (E) → E is a levelwise equivalence,
and so a stable equivalence.

Now recall that there is a functor

Γ : Top∗→ Top∗

and a natural weak equivalence

Γ =⇒ 1

so that ΓX is a CW complex for each space X . This clearly extends to a
functor

Γ : Sp→ Sp

and a natural levelwise equivalence

Γ =⇒ 1.

This has the property that if E is a spectrum, then ΓE is also a spectrum,
but with each (ΓE)n a CW spectrum. Thus, T e l (ΓE) is a CW spectrum
and we have natural levelwise equivalences

T e l (ΓE)→ ΓE → E

and so the composite is a levelwise equivalence. Therefore, up to natural
levelwise equivalence, each spectrum can be replaced by a CW spectrum,
and hence provides an object (in a natural way) in SHC.
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4.7. Telescopes (or the homotopy colimit). I want to just mention a way
of defining colimits in SH C . For the moment lets work in spaces. Suppose
that we have a tower

X0→X1→X2→ ·· ·
of pointed CW complexes. Define the telescope (or the homotopy colimit)
to be the the space

hocolim(X•) :=
∨

n∈N
Xn ∧ [n, n+ 1]+/∼

where∼ is the equivalence relation generated by identifying Xn∧{n+1}+
with Xn+1 ∧{n+ 1}+ via the map Xn→Xn+1.

Lemma 4.26. If the tower X• is a tower of inclusions of subcomplexes, then
there is a canonical map

hocolimX•→ colimX•
and this map is a homotopy equivalence.

Proof. Observe that

eXk

k
∨

n=0

Xn ∧ [n, n+ 1]+/∼

is homotopy equivalent to Xk . Now colimX• =
⋃

k Xk . Similarly, we have
that

eX0→ eX1→ ·· ·
is a tower of cofibrations, and so

colim
k
eXk =
⋃

k

eXk = hocolimX•.

In particular, the projections eXk → Xk determine a map in the colimit,
giving

hocolimX•→ colimX•.
Observe that

π∗hocolimX• = colimπ∗fXk = colimπ∗Xk

thus the map is a weak equivalence. Since hocolimX• and colimX• are
both CW complexes, it follows from Whitehead’s theorem that they are
homotopy equivalent. �

I want to end this section discussing the so-called tautological presenta-
tion of a spectrum E . Suppose that E is a CW spectrum. Here, I will write
ΣnX for the shift functors.
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4.8. Ω-spectra and the functor Ω∞. First, lets figure out what stable
equivalences between Ω-spectra are.

Definition 4.27. A spectrum E is an Ω-spectrum if the adjoint of each of
the structure maps ε′n : En→ΩEn is a weak equivalence.

Lemma 4.28. If E is an Ω-spectrum, then

πs E =πs+k Ek

for all k so that s + k ≥ 0.

Proof. This is because the homotopy group is defined by the following col-
imit

πs E = colim
k→∞

πk+s Ek .

As E is an Ω-spectrum, all of the morphisms in this colimit are isomor-
phisms. �

Proposition 4.29. A function f : E → F between two Ω spectra is a stable
equivalence if and only if f is a levelwise equivalence.

Proof. This follows because the isomorphisms of the previous lemma are
natural in E . �

Proposition 4.30. Suppose that g : E → F is a levelwise equivalence between
spectra. Then E is an Ω-spectrum if and only if F is.

Proof. We have the commutative diagrams

En Fn

ΩEn+1 ΩFn+1

gn

ε′n ε′n
Ωgn

As g is a levelwise equivalence, both of the horizontal arrows are weak
equivalences. Thus one of the vertical arrows is a weak equivalence if and
only if the other is. �

Theorem 4.31. For a spectrum E there is an Ω-spectrum E ′ and a stable
equivalence E → E ′. Furthermore, this construction is functorial and pro-
duces a natural stable equivalence 1 =⇒ ()′.

Proof. For an integer n, we have the following tower

En→ΩEn+1→ ·· · →Ω
k En+k→ ·· ·

where the maps are the adjoints of the structure maps of E . We define

E ′n := hocolim
k

Ωk En+k .
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Because S1 is compact, we have an equivalence

ΩE ′n = hocolim
k

Ωk+1En+k

so we get an induced morphism E ′n → ΩE ′n+1. Thus the spaces E ′n form a
spectrum E ′. A cofinal subdiagram argument shows that the maps E ′n →
ΩE ′n are weak equivalences, and so E ′ is an Ω-spectrum.

We obviously have a map En → E ′n for each n, I leave it as an exercise
to check that these maps form a function and that this function is a stable
equivalence. �

We need to have thisΩ-ification construction in order to define the func-
tor

Ω∞ : SHC→ hoTop∗.
The idea behind this functor is that it should send a spectrum E to its
underlying infinite loop space. In particular, we want it to have the property
that if f : E → F is a stable equivalence then Ω∞ f is a weak equivalence.
The most obvious candidate for Ω∞ is to define

Ω∞E := E0,

but this doesn’t work in general since a function f : E → F can be a sta-
ble equivalence without inducing a weak equivalence on the 0th spaces.
However, if we replace E by E ′, then we get a sensible functor.

Remark 4.32. What I am implicitly thinking about here is that we need
to consider the right derived functor (in the sense of Quillen) of E 7→ E0.

Remark 4.33. In order to really define Ω∞ we really need to make sure
that if we have a CW spectrum E then E ′ remains a CW spectrum. There
is a modification of this construction which does that. (cf. Rudyak).

4.9. Homology and cohomology. We can naturally extend homology
and cohomology to spectra.

Theorem 4.34 (Adams). The obvious analog of Brown representability for
functors on the category of CW spectra with morphisms of degree 0 holds.

Given a spectrum E , we can also define an associated homology and
cohomology theory. Let X be a spectrum, then we define

Definition 4.35. Let E and X be spectra. Then we define the E-homology
of X to be

En(X ) :=πn(E ∧X )
and we define the E-cohomology of X to be

E n(X ) := [X ,ΣnE] = [X , E]−n =π−nF (X , E).



32 D. CULVER

This clearly gives us a means to define the reduced homology or coho-
mology theory associated to E on spaces. Namely, given a CW complex
K , we define

eE∗(K) :=π∗(E ∧Σ
∞K),

and
eE∗(X ) := [Σ∞X , E]−∗.

Exercise 17. Show that these functors satisfy the Eilenberg-Steenrod ax-
ioms, and hence really do define (co)homology theories on spaces.

What is really beneficial about this perspective is that we can now think
of expression E∗X is a functor in two variables, E and X .

Proposition 4.36. Given cofibre sequences

X Y Z
f g

and

E F G
ϕ ψ

then we get long exact sequences

EnX EnY EnZ
f∗ g∗

and

EnX FnX GnX .
ϕ∗ ψ∗

There are dual exact sequences for cohomology.

Proof. Left as an exercise. This essentially comes from using several prop-
erties about cofibre sequences. �

Proposition 4.37. For any E and any X in SHC, we have natural isomor-
phisms

EnX ∼= En+1ΣX

E n(X )∼= E n+1(ΣX )

and
En(S) = E−nS =πnE .

Exercise 18. Suppose that E is anΩ-spectrum. Show that if X =Σ∞K for
a complex K , then

E n(X )∼= [K , En].
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5. EXAMPLES OF SPECTRA

5.1. Eilenberg-MacLane spectra. The first example of a (co)homology
that one sees is singular cohomology. Let G be an abelian group. Recall
that we have the Eilenberg-MacLane spaces K(G, n) with the property that
they are CW complexes and

π∗K(G, n) =
¨

G ∗= n
0 ∗ 6= 0

Furthermore, these spaces have the property that they are unique up to
homotopy equivalence. Also, note that

π∗ΩK(G, n) =π∗+1K(G, n),

which shows that ΩK(G, n)'K(G, n−1). Thus the spaces {K(G, n)}n∈N
come together to form an Ω-spectrum. We denote the resulting spectrum
by H G.

We have already seen that if X is a space then

eH n(X ;G)∼= [X ,K(G, n)]

and hence we have
eH n(X ;G) = [Σ∞K , H G]−n.

I didn’t mention it before, but it is true that
eHn(X ;G)∼= colim

k
πn+k(X ∧K(π, k)).

The way you prove such a natural isomorphism is by showing the right
hand side defines a reduced homology theory on spaces which satisfies the
dimension axiom (take a look at May’s book Chapter 22 for a proof).

In particular, unraveling the definitions then tells us that

eHn(X ;G)∼=πn(Σ
∞X ∧H G) =πn(X ∧H G)

Now since the Eilenberg-MacLane spaces can be constructed functori-
ally, we essentially have a functor

H : Ab→ SHC;G 7→H G.

In particular, to the map ·2 :Z→Z we have a corresponding map

HZ HZ2

of Eilenberg-MacLane spectra. Now we could consider the cofibre C of
this map. This induces a long exact sequence in homotopy groups

π∗HZ π∗HZ π∗C .2
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This shows that the only nontrivial homotopy group of C is π0, which is
a Z/2. Thus C 'HF2. In other words, we have a cofibre sequence

HZ HZ HZ/22

in spectra. This produces a long exact sequence

· · · HZ∗X HZ∗X HZ/2∗X HZ∗−1X · · · .·2 ∂

In the case when X =Σ∞K for a space K , this long exact sequence reduces
to the usual one.

Exercise 19. Generalize the above argument to show that the functor H
takes short exact sequences of abelian groups to cofibre sequences of spec-
tra.

Similarly, we have a cofibre sequence

HZ/2 HZ/4 HZ/2

arising from the short exact sequence

0→Z/2→Z/4→Z/2→ 0.

Again, this induces a long exact sequence

· · · HZ/2∗X HZ/4∗X HZ/2∗X HZ/2∗−1X · · ·∂

and again when X = Σ∞K for some space K , the connecting homomor-
phism ∂ is often referred to as the Bockstein homomorphism. Now the con-
necting homomorphism is actually given by a spectrum level map, namely,

β : HZ/2→ΣHZ/2,

obtained from continuing the cofibre sequence. Note that

πn(ΣHZ/2∧X ) =πn−1(HZ/2∧X ),

so the degrees match up. In general, the Bockstein homomorphism is non-
trivial. Thus, we have found a nontrivial element in

(HZ/2)1HZ/2= [HZ/2,ΣHZ/2].

This is the first example of an element in something called the Steenrod
algebra. We will talk about this extensively a little later in the course.
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5.2. topological K -theory spectra. Lets start with complex K -theory.
First, I will define a functor

K0 : Top∗→ Ab.

Consider the set of Vect(X ) of all finite rank complex vector bundles on
X up to isomorphism. For a vector bundle E on X , we let [E] denote its
isomorphism class. This is clearly a semi-ring, with addition and multipli-
cation induced by the operations ⊕ and ⊗ respectively. We define K0(X )
to be the Grothendieck completion of Vect(X ).

More explicitly, we define K(X ) to be the free abelian group F (X ) gen-
erated by the set Vect(X ), and then mod out by the relations [E]+ [F ]−
[E⊕F ]. This makes K(X ) an abelian group. One also gets a multiplication
by defining

[E][F ] := [E ⊗ F ]
and then extending in the usual way. Another way of constructing this
group is to consider the diagonal map

∆ : Vect(X )→Vect(X )×Vect(X )

and then define K(X ) to be the ∆(Vect(X )) cosets of Vect(X )×Vect(X ).
The idea is that the expressions ([E], [F ]) are formally thought of as [E]−
[F ]. These give the same group.

Recall that given a vector bundle F , there exists a vector bundle G such
that F⊕E = εn, where εn denotes the trivial bundle of rank n. Thus, given
an expression [E]− [F ]we can always find a bundle G so that F ⊕G = εn

and

[E]− [F ] = [E]− [F ]+ [G]− [G] = [E ⊕G]− [εn] = [E ⊕G]− n.

Thus every element of K0(X ) can be expressed as [E]− n for some vector
bundle E and some natural number n.

Now suppose that E and F are vector bundles on X and suppose that
[E] = [F ] in K0(X ). Then by the definition, there is a bundle G such that

E ⊕G ∼= F ⊕G.

Thus, there is a bundle G′ such that G⊕G′ ∼= n for some n.

E ⊕ n ∼= F ⊕ n

for somenatural number n.
We often call elements of K0(X ) virtual vector bundles. There is an ob-

vious homomorphism
deg : K0X →Z

defined by taking
[E]− [F ] 7→ dim E − dim F .
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This integer is called the virtual dimension.

Theorem 5.1.

5.3. Thom spectra. Now lets talk about Thom spectra. This is an exam-
ple of spectra which don’t arise as an Ω-spectrum. They naturally arise as
sequential spectra.

5.4. Moore spectra. I want to now talk about an important class of spec-
tra known as Moore spectra. Suppose that x ∈πk S is a nontrivial element
in the stable homotopy groups of the sphere. This corresponds to a map

Sk S0,x

the cofibre is referred to as the cone on x, and is denoted as S/x. In the
particular case when x ∈ π0S = Z, then we have that x = n for some
integer n. In this case we refer to S/n as the mod n Moore spectrum.

Remark 5.2. The mod n Moore spectra are very strange. In particular,
we DO NOT have that π∗(S/n) =π∗(S)/n.

Let G be an abelian group. Fix a free resolution of G,

0→ R→ F →G→ 0.

Let
∨

α∈A S and
∨

β∈B S be such that

π0(
∨

α∈A

S) = R

and
π0(
∨

β∈B

S) = F .

Let i :
∨

α∈A S →
∨

β∈B S be a map of spectra inducing the map R → F .
Let M G denote the cofibre of i . Then we have the following.

Proposition 5.3. We have for M G
(1) πr M G = 0 for r < 0, i.e. M G is connective,
(2) π0M G =H0M G =G, and
(3) Hr (M G) = 0 for r > 0.

So we are justified in calling M G a Moore spectrum of type G. No-
tice that, since smashing with HZ preserves cofibre sequences, we have a
cofibre sequence

HZ∧
∨

α∈A S HZ∧
∨

β∈B S HZ∧M G.

Considering the long exact sequence in π∗ shows that HZ∧M G ' H G.
In particular, for example, we have HZ∧ S/2'HZ/2.
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6. DUALITY AND ORIENTATIONS?? (TIME PERMITTING)

7. COHOMOLOGY OPERATIONS AND HOMOLOGY
CO-OPERATIONS

7.1. Ring spectra. Since we have a smash product we can define ring spec-
tra. The idea is to take the usual diagrams defining rings in the usual sense,
and replace everything with spectra and the smash product.

7.2. Operations and co-operations.

7.3. Steenrod algebra and its dual.

7.4. Adams operations.

8. THE ADAMS SPECTRAL SEQUENCE

So how do we actually compute things? Well, one very general way to
approach computations is through something called the Adams spectral
sequence.

8.1. Constructing the spectral sequence.

8.2. Convergence: a digression on Bousfield localizations.

8.3. The E2-term?

8.4. The May spectral sequence.

8.5. Hopf invariant one elements and the Kervaire elements.

9. APPLICATIONS

9.1. The calculation of π∗M O and π∗M U .

9.2. Hopf invariant one.

9.3. Vector fields on spheres.

9.4. Image of the stable J -homomorphism.

10. VISTAS

10.1. Homotopie Chromatique.

10.2. autre modeles du spectres.

10.3. la conjecture de Adams.
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APPENDIX A. SPECTRAL SEQUENCES

APPENDIX B. SIMPLICIAL SETS AND CLASSIFYING SPACES
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